

Petri nets for qualitative modelling of biological networks

Claudine Chaouiya Technologies Avancées pour le Génome et la Clinique TAGC ERM 206 Université de la Méditerranée chaouiya@univmed.fr

Petri net modelling

- ✓Mathematical and graphical formalism
- ✓ Representation of concurrency/parallelism
- ✓ Strong mathematical foundations

Properties

- Structural \rightarrow P-invariants (conservative components)
 - \rightarrow T-invariants (repetitive components)
- Dynamical \rightarrow liveness
 - \rightarrow boundness
 - \rightarrow reachability

conservation

- flux modes
- stable states / equilibrium
- limited concentrations
- paths in the dynamics

Tools

- Analytical approaches \rightarrow state equations, algebraic equations, graph analysis...
- Model checking
- Simulation

a variety of analysis tools and simulation shells available

Extensions

Stochastic PN, Coloured nets, Hybrid nets...

Biological networks ?

Different **abstraction levels** depending on The biological questions The nature and quality of available data

> Molecular level: **biochemical network** Gene cross-regulation level: **genetic network** Tissue level: **inter-cellular network**

which semantic ?

Outline

- Petri net basics
- Standard PN modelling of biochemical networks
- Standard PN modelling of *logical* regulatory
- networks
- Towards an integrated qualitative modelling of regulated metabolic networks

Petri net basics

Petri net basics

initial marking $PxT \rightarrow IN$ $M_0 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad Pre = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix},$ $TxP \rightarrow IN$ $Post = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix},$ $C = Post^{\mathrm{T}} - Pre$. $M_{1} = M_{0} + C \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix},$ $M_0[t_1 > M_1]$.

Spring School on Dynamical Modelling of Biological Regulatory Networks

Petri net basics - invariants

Outline

Petri net basics

– PN modelling of biochemical networks

- PN modelling of *logical* regulatory networks
- Towards an integrated qualitative modelling of regulated metabolic networks

Modelling of biochemical networks

PN based stoichiometric analysis (structural analysis)

- stoichiometry *i.e.* the reactants involved + molar ratios of consumption and production
- reaction directionality (reversible / irreversible)
- catalysing enzymes
- dynamics neglected

m, number of metabolites

q, number of reactions

N, $(q \times m)$ stoichiometric matrix (N_{ii} = stoichiometric coef. of i in reaction j)

$\frac{d\mathbf{c}(t)}{dt} = \mathbf{N} \cdot \mathbf{r}(t) = 0, \qquad \text{in the PN representation C, the incidence} \\ \text{matrix } \mathbf{\underline{is}} \text{ the stoichiometric matrix}$

c $(m \times 1)$ vector of current metabolite concentrations,

 $\mathbf{r}(t)(q \ge 1)$ a flux distribution.

Modelling of biochemical networks PN based stoichiometric analysis (structural analysis)

(Pseudo)-steady state assumption, high turnover of substances (when compared to regulatory events), on longer time scales, metabolite concentrations and reaction rates are supposed constant:

$$\frac{d\mathbf{c}(t)}{dt} = \mathbf{N}.\mathbf{r}(t) = 0$$

Modelling of biochemical networks PN based stoichiometric analysis (structural analysis)

(Pseudo)-steady state assumption, high turnover of substances (when compared to regulatory events), on longer time scales, metabolite concentrations and reaction rates are supposed constant:

$$\frac{d\mathbf{c}(t)}{dt} = \mathbf{N}.\mathbf{r}(t) = 0$$

Conservation relations: weighted sums of metabolite concentrations which remain constant in the system $\mathbf{N}^{\mathsf{T}} \cdot \mathbf{y} = 0$

correspond to P-invariants in PNs

Modelling of biochemical networks PN based stoichiometric analysis (structural analysis)

(Pseudo)-steady state assumption, high turnover of substances (when compared to regulatory events), on longer time scales, metabolite concentrations and reaction rates are supposed constant:

$$\frac{d\mathbf{c}(t)}{dt} = \mathbf{N}.\mathbf{r}(t) = 0$$

Conservation relations: weighted sums of metabolite concentrations which remain constant in the system $\mathbf{N}^{\mathsf{T}} \cdot \mathbf{y} = 0$

correspond to P-invariants in PNs

Elementary flux modes (EFMs), correspond to non decomposable steady state flux distributions using a minimal set of reactions (Schuster *et al.*,1999)

N.**r** = 0,
$$r_i \ge 0$$
, if reaction *i* irreversible.

related to T-invariants in PNs

Outline

Petri net basics

- PN modelling of biological networks, short overview
- Qualitative PN modelling of metabolic networks

- PN modelling of *logical* regulatory networks

Towards an integrated qualitative modelling of regulated metabolic networks

Logical approach Dynamical modelling of gene networks

✓ A graph describes the interactions between genes or regulatory products

✓ Discrete levels of expression associated to each gene (logical variables)

 $\checkmark\,$ Levels associated to each interaction

✓ Logical parameters effects of combinations of incoming interactions $K_B(\emptyset)=0$ $K_B({A,1})=1$

 $K_{R}(\{A,2\})=0$

Spring School on Dynamical Modelling of Biological Regulatory Networks

Multi-valued Regulatory Petri Nets

Genetic regulatory networks described in terms of logical models (multilevel discretisation)

- two complementary places for each gene
- two transitions for each logical parameter (effect of interactions on a given gene)

Spring School on Dynamical Modelling of Biological Regulatory Networks

Multi-valued Regulatory Petri Nets

Genetic regulatory networks described in terms of logical models (multilevel discretisation)

- two complementary places for each gene
- two transitions for each logical parameter (effect of interactions on a given gene)

Multi-valued Regulatory Petri Nets

Genetic regulatory networks described in terms of logical models (multilevel discretisation)

- two complementary places for each gene
- two transitions for each logical parameter (effect of interactions on a given gene)

Multi-valued Regulatory Petri Nets

GINsim, a dedicated software for the definition, simulation, analysis of logical regulatory graphs provides export facilities to INA format and PNML

Spring School on Dynamical Modelling of Biological Regulatory Networks

Outline

Petri net basics

- PN modelling of biological networks, short overview
- Qualitative PN modelling of metabolic networks
- PN modelling of *logical* regulatory networks
- Towards an integrated qualitative modelling of regulated metabolic networks

E.Simão, E.Remy, D.Thieffry, C.Chaouiya (2005). *Qualitative Modelling* of Regulated Metabolic Pathways: Application to the Tryptophan Biosynthesis in E.Coli. Bioinformatics 21: ii190-196.

The Tryptophan Biosynthesis in *E. coli*

Spring School on Dynamical Modelling of Biological Regulatory Networks

The Tryptophan Biosynthesis in *E. coli*

PN model of the metabolic pathway

- metabolites / substrates / products / enzymes ... > places
- reactions / catalysis ... > transitions
- stoichiometry \rightarrow arcs and associated weights

PN model of the metabolic pathway

Spring School on Dynamical Modelling of Biological Regulatory Networks

when Trp_{ext}=0 and TrpE=0, Trp \rightarrow 0

gene or regulatory product ... → 2 complementary places
 combination of incoming interactions →1 or 2 transitions

The Tryptophan biosynthesis regulation PN representation

when Trp_{ext}=0 and TrpE=0, Trp \rightarrow 0

gene or regulatory product ... → 2 complementary places
 combination of incoming interactions →1 or 2 transitions

The Tryptophan biosynthesis regulation PN representation

Integrated Petri net modelling

Integrated Petri net modelling

Integrated Petri net modelling

Initial state: no external tryptophan, all input compounds present, all enzymes active, no internal tryptophan, no holorepressor

One cyclic attractor denoting homeostatic levels of internal tryptophan and TrpE activity

	CHA	ANTA	PRAA	CRDP	I3GP	IND	TrpE	TrpD	TrpC	TrpB	TrpA	Trp	TrpR	Trp _{ext}
\wedge	1	0	0	0	0	0	1	1	1	1	1	0	0	0
/ r1\	0	1	0	0	0	0	1	1	1	1	1	0	0	0
r2	0	0	1	0	0	0	1	1	1	1	1	0	0	0
r3 v	0	0	0	1	0	0	1	1	1	1	1	0	0	0
r4	0	0	0	0	1	0	1	1	1	1	1	0	0	0
r5	0	0	0	0	0	1	1	1	1	1	1	0	0	0
r6 _	1	0	0	0	0	0	1	1	1	1	1	1	0	0
t6	1	0	0	0	0	0	0	1	1	1	1	1	0	0
t1	1	0	0	0	0	0	0	1	1	1	1	0	0	0

Integrated PN modelling - Analysis

low external tryptophan, all input compounds present, all enzymes active, no internal tryptophan, no holorepressor

a **unique reachable dead marking** with a **moderate level** of internal **tryptophan** ; **repressor** and **TrpE inactive**

	CHA	ANTA	PRAA	CRDP	I3GP	IND	TrpE	TrpD	TrpC	TrpB	TrpA	Trp	TrpR	Trp _{ext}
	1	0	0	0	0	0	1	1	-	1	1	0	0	1
S	1	0	0	0	0	0	0	1	1	1	1	1	0	1

Integrated PN modelling - Analysis

high external tryptophan, all input compounds present, all enzymes active, no internal tryptophan, no holorepressor

six reachable dead markings with a high level of internal tryptophan, the six enzymes inactive, the repressor active

	CHA	ANTA	PRAA	CRDP	I3GP	IND	TrpE	TrpD	TrpC	TrpB	TrpA	Trp	TrpR	Trp _{ext}
÷	1	0	0	0	0	0	1	1	1	1	1	0	0	2
>	1	0	0	0	0	0	0	0	0	0	0	2	1	2
>	0	1	0	0	0	0	0	0	0	0	0	2	1	2
>	0	0	1	0	0	0	0	0	0	0	0	2	1	2
>	0	0	0	1	0	0	0	0	0	0	0	2	1	2
>	0	0	0	0	1	0	0	0	0	0	0	2	1	2
·>	0	0	0	0	0	1	0	0	0	0	0	2	1	2

Modelling of biological networks, Coloured PNs

- -Tokens are distinguishable by means of "colour" sets
- Guards are associated to transitions
- Functions associated to arcs
- \rightarrow compacted models (a CPN can be unfolded to a low level PN)

CPN modelling of metabolic pathways

Discrimination of alternative metabolic paths K. Voss, M. Heiner, and I. Koch (2003) *In Silico Biol*, 3(3):367–87.

CPN modelling of regulatory networks (*logical* formalism) verify the coherence of the system under various hypotheses.

J.-P. Comet, H. Klaudel, S. Liauzu (2005) ICATPN - LNCS 3536, 208-227.

C.Chaouiya, E. Remy, D.Thieffry (2006) Qualitative Petri net modelling of genetic networks. TCSB VI, 95-112.

Recall that in the logical formalism, the evolution of the system is directed by logical parameters: in a given state, and for a given gene g_j select the relevant parameter

Given a regulatory graph R = (G, I, K), an initial state \mathbf{x}_0 , the corresponding Coloured Regulatory Petri Net, $C(R) = (\Sigma, P, T, A, C, G, E, x_0)$, is defined by:

- ♦ $P = \{g_1, \ldots, g_n\}$ the set of places, $T = \{T_1, \ldots, T_n\}$ the set of transitions.
- Σ the finite set of colour sets: $\Sigma = \{ [0, Max_i], i = 1, ..., n \}$.
- ♦ *C* the color function: $C : P \to \Sigma$, $C(gi) = [0, Max_i]$.
- ♦ $A \subseteq (PxT \cup TxP)$ the set of arcs with

 $\forall T_i \in T, \forall g_j \in Reg(i), (g_j, T_i) \in A \text{ and } (T_i, g_j) \in A, (g_i, T_i) \in A, (T_i, g_i) \in A.$

♦ *E* the arc expression function defined as follows: $\forall Ti \in T$,

 $\forall g_j \in `T_i \setminus \{g_i\}, \quad E(g_j, T_i) = E(T_i, g_j) = x_j, \ x_j \in C(g_j), \ (\text{with } `T_i = Reg(i) \cup \{g_i\})$ $E(g_i, T_i) = x_i, \ x_i \in C(g_i),$

 $E(T_i, g_i) = x_i + sign(T_i(\mathbf{x}) - x_i), \ \mathbf{x} \in \prod_{gk \in P} C(g_k).$

• $G = \{G_1, \ldots, G_n\}$ is the set of guards;

for all transition T_i a Boolean function, G_i is defined as follows: $\forall \mathbf{x} \in \prod_{ak \in P} C(g_k)$, $G_i(\mathbf{x}) = [T_i(\mathbf{x}) = x_i]$.

• The initial marking \mathbf{x}_0 = assigns to each place g_i one token with the required value in $C(g_i)$

Efficient representation of $\mathcal{T}(\mathbf{x})$

Modelling of biological networks, Stochastic PNs

SPN modelling of stochastic molecular interactions (Gillespie's algorithm)

- R. Srivastava, MS Peterson and WE Bentley (2001) Biotechnol Bioeng. Oct 5;75(1):120-9.
 - Uncertainty attached to the data
 - Environmental noise
 - → Intrinsic noise (*i.e.* low molecular concentrations) Stochastic time-delay associated to each transition (exponential distribution, may depend on the marking)

t1. θ1

Modelling of biological networks, Hybrid PNs

HPN modelling of gene regulated metabolic networks

M.Chen and R.Hofestädt (2003), In Silico Biology 3, 0029

molecular concentration = continuous rather than discrete

discrete places (with tokens) discrete transitions (with delays) continuous places (with marks $\in IR^+$) continuous transitions (with speeds

Modelling of biological networks, Hybrid PNs

HPN modelling of gene regulated metabolic networks

Lambda phage genetic switch feedback mechanism

A. Doi, H. Matsuno, S. Miyano (2000) Currents in Computational Molecular Biology, 26-27.

Spring School on Dynamical Modelling of Biological Regulatory Networks

http://www.genomicobject.net

Conclusions

Segment polarity *logical* model (72 components)

Full state transition graph (considering all possible initial conditions) has 3 018 225 388 942 786 560 nodes
WT reachability analysis: two main multicellular outcomes using the PN translation, generation of the marking graph 250 000 states (partial reduced marking graph, stubborn reduction) → 2 dead markings

Use of priorities + depth limitation

Conclusions

- Wide variety of PN based modelling for biological networks graphical representation, suitability to represent concurrency, well founded mathematical theory, available tools for analysis / simulation pure qualitative to sophisticated hybrid models structural analysis to pure simulation model checking
- Step by step modelling:

integration of different levels of abstraction through the different PN extensions

facing the problem of composition: defining PN building blocks

References

✓T. Murata (1989) Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, Vol.77, No.4.

✓S. Hardy and P. Robillard (2004) Modeling and simulation of molecular biology using Petri nets: modeling goals of various approaches. J. of Bioinformatics and Computational Biology, 2(4):619-37.

✓I. Koch, S. Schuster and M. Heiner (2003) Simulation and analysis of metabolic networks by time dependent Petri nets. In Silico Biology 3-31.

✓C. Chaouiya and E. Remy and D. Thieffry (2006) Qualitative Petri Net Modelling of Genetic Networks. TCSB VI, 4220:95-112.

✓ H. Matsuno *et al.* (2003) Biopathways representation and simulation on hybrid functional Petri net. In Silico Biol. 3-32.

✓ Srivastava R, Peterson MS, Bentley WE (2001) Stochastic kinetic analysis of the Escherichia coli stress circuit using sigma(32)-targeted antisense. Biotechnol Bioeng. Oct 5;75(1):120-9.