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Kohn, Mol. Biol. Cell., 1999



How did we get to this mess??



Murray and Kirschner, Science, 1989



Xenopus and the clock paradigm

Cell mass decreases during early divisions

Alberts et a., Molecular Biology of the Cell.2002



In Xenopus oscillations progress independently
of DNA presence and cell cycle events

Autonomous oscillations!

Alberts et a., Molecular Biology of the Cell.2002



MPF, the mitosis promoting factor

Murray and Kirschner, Science, 1989



MPF is a heterodimer
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Only cyclin synthesis and degradation are required for Xenopus early cycles.

Alberts et a., Molecular Biology of the Cell.2002
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Cyclin threshold

Solomon et al, Cell, 1990



Yeast and the domino paradigm
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Cell division cycle (cdc) mutants are temperature sensitive

Alberts et a., Molecular Biology of the Cell.2002

Hartwell, Genetics, 1991



wee1wild type cdc25

Wee1 controls a rate limiting step in the cell cycle

Cell division and cell growth are coupled

unreplicated DNA 

Nurse, Noble lecture, 2000



Basic cell cycle properties

- Cell physiology-

- Coupling of mass growth and cell division.

- Once the cell enters the cycle,it is commited to finish it: irreversibility.

- The cell halts during cell cycle progression if something has gone wrongly.

-Molecular network-

-Oscillations of MPF drive cells into and out of mitosis.

- Cdc28 activity is controlled by Wee1 (negative) and Cdc25 (positive).



Dominoes and clocks: Cdc28 is the
budding yeast homologous of MPF’s

catalytic subunit
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...and the physiology

Solomon et al, Cell, 1990



Part II
Standard laws of biochemical kinetics

applied to molecular networks



pMPF MPF

� 

dMPF

dt
= ka ! pMPF

pMPF =MPFtot -MPF

dMPF

dt
= ka ! (MPFtot -MPF)

ka

dMPF

dt
= 0

MPF
SS
=MPF

tot

Steady State solution (MPFSS)

Law of Mass Action: forward reaction

Notice: no dimer, only MPF. Cdk is supposed to be present in excess throughout
the cycle. Increasing MPF total mimics an increase in cyclin total.
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What happens if MPF total increases?
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Michaelis-Menten: forward reaction
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Michaelis-Menten: reversible reaction

Wee1P Wee1
kwa

kwi

Wee1P Enzyme1:Wee1P
k1

Enzyme1 Enzyme1

Wee1
k1r

k2

Wee1 Enzyme2:Wee1
k3

Enzyme2 Enzyme2

Wee1P
k3r

k4



dWee1

dt
=
kwa ! (Wee1

tot
"Wee1)

J +Wee1
tot
-Wee1

-
kwi !Wee1

J +Wee1

production
+

elimination
-

if [enzym1TOT], [enzyme2TOT] << [Wee1TOT]

kwa=[enzyme1TOT]k2

kwi=[enzyme2TOT]k4



Michaelis-Menten: reversible reaction
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How does MPF increases with Cyclin total?
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Solomon et al, Cell, 1990

Not quite the same!
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Michaelis-Menten: 
catalyzed reversible reaction
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How does MPF increases with Cyclin total?
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Hysteresis in the Xenopus early cycles: simulation
of an experimental result

From Sha et al, PNAS, 2003





What happens if cyclin total increases with cell mass?
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Conclusion

-Same wiring in different organisms, combination of positive and negative

feedbacks.

- In Xenopus early development, with large mass, the cell cycle is a limit

cycle oscillator, the negative feedback plays the key role.

- Artificially, an additional mechanism of control emerges, based on a

positive feedback loop.

- Both positive and negative feedbacks are at work in yeast. In these

organisms, mass growth drives the cell cycle.

- Positive feedbacks introduce checkpoints and irreversibility in the cycle.

The negative feedback the capability to start a new process.




