
Machine Learning Biochemical Networks
from Temporal Logic Properties

Laurence Calzone, Nathalie Chabrier-Rivier,
François Fages, Sylvain Soliman

Firstname.Lastname@inria.fr

Projet Contraintes, INRIA Rocquencourt,
BP105, 78153 Le Chesnay Cedex, France.

http://contraintes.inria.fr/

Abstract. One central issue in systems biology is the definition of for-
mal languages for describing complex biochemical systems and their be-
havior at different levels. The biochemical abstract machine BIOCHAM
is based on two formal languages, one rule-based language used for mod-
eling biochemical networks, at three abstraction levels corresponding to
three semantics: boolean, concentration and population; and one tem-
poral logic language used for formalizing the biological properties of the
system. In this paper, we show how the temporal logic language can
be turned into a specification language. We describe two algorithms for
inferring reaction rules and kinetic parameter values from a temporal
specification formalizing the biological data. Then, with an example of
the cell cycle control, we illustrate how these machine learning techniques
may be useful to the modeler.

1 Introduction

One promise of systems biology is to model biochemical processes at a suffi-
ciently large scale so that the behavior of a complex system can be predicted
under various conditions. The language approach to systems biology aims at
designing formal languages for describing biochemical mechanisms, processes
and systems at different levels of abstraction. The pioneering use in [1] of the
π-calculus process algebra for modeling cell signalling pathways, has been the
source of inspiration of numerous works in the line of process calculi [2–4] and
their stochastic extensions [5].

Recently, the question of formalizing the biological properties of the system
has also been raised, and formal languages have been proposed for this task,
most notably using temporal logics in either boolean [6, 7], discrete [8–10] or
continuous models [11, 12].

The biochemical abstract machine BIOCHAM [13, 14] has been designed as
a simplification of the process calculi approach using a language of reaction
rules that is both more natural to the biologists and well suited to apply model-
checking techniques [15]. The rule-based language is used for modeling biochemi-
cal networks at three abstraction levels corresponding to three formal semantics:



boolean, concentration and population. In the boolean case, where one reasons
only about the presence or absence of molecules, the reaction rules are highly
non-deterministic rewriting rules. This setting is similar to Pathway Logic [6]
and Petri nets. In the concentration (resp. population) semantics, the rules are
equipped with kinetic expressions which provide a continuous dynamics with
Ordinary Differential Equations (ODEs) (resp. continuous time Markov chains),
somewhat similarly to the bio-calculus [16, 17]. One striking feature of this multi-
level approach is that in the three cases, temporal logic can be used to formalize
the biological properties of the system, and verify them by model-checking tech-
niques.

Turning the temporal logic language into a specification language for ex-
pressing the observed behavior of the system opens the way to the use of ma-
chine learning techniques for completing or correcting such formal models semi-
automatically. There has been work on the use of machine learning techniques,
such as inductive logic programming [18], to infer gene functions [19], metabolic
pathway descriptions [20, 21] or gene interactions [8]. However learning biochem-
ical reactions from temporal properties is quite new, both from the machine
learning perspective and from the systems biology perspective.

In this paper, we first describe the basic BIOCHAM language of biochemical
processes with its three semantical levels, and the temporal logic language used
for formalizing the biological properties of the system. We then present a struc-
tural learning algorithm for inferring reaction rules, or more generally model
revisions, from a temporal specification of the system at the boolean abstraction
level. Next, we detail a similar algorithm for finding kinetic parameter values
from a temporal specification at the concentration abstraction level. These al-
gorithms and their implementation in BIOCHAM1 are illustrated in Sect. 6 on
a model of the cell cycle control after Qu et al. [22], with examples of model
revision, refinement and parameter search. Finally, we conclude on the merits of
this approach, its limits and on some perspectives for future work.

2 BIOCHAM’s Description Language of Biochemical
Processes

2.1 Syntax

BIOCHAM rules represent biomolecular reactions between chemical or biochem-
ical compounds, ranging from small molecules to proteins and genes. The syntax
of the formal objects involved, and their reactions, is given by the following (sim-
plified) grammar:

1 BIOCHAM is a free software implemented in Prolog and dis-
tributed under the GPL license. It is downloadable on the web at
http://contraintes.inria.fr/BIOCHAM. The data used in this paper are available
at http://contraintes.inria.fr/BiochamLearning/TCSB



object = molecule | molecule :: location
molecule = name | molecule-molecule |molecule∼{name,. . . ,name}
reaction = solution => solution | kinetics for solution => solution
solution = | object | number*object | solution + solution

The basic object is a molecular compound. Thanks to the “::” operator, it
can be given a precise location, which is a simple name representing a (fixed)
compartment, such as the nucleus, the cytoplasm, the membrane, etc. The bind-
ing operator “−” is used to represent complexations and other forms of inter-
molecular bindings. The alteration operator “∼” makes it possible to attach to
a compound a set of modifications, such as the set of phosphorylated sites of a
protein. For instance, A~{p} denotes a phosphorylated form of the compound A,
and A~{p}-B denotes its complexation with B.

Reaction rules transform one formal solution into another one. The following
abbreviations are used: A =[C]=> B for the catalyzed reaction A+C => C+B, and
A <=> B for the reversible reaction equivalent to the two symmetrical reactions
A => B and B => A. The constant “ ” represents the empty solution. It is used
for instance in protein degradation rules, like A => , and in synthesis rules,
like =[G]=> A for the synthesis of A by the (activated gene) catalyst G. The
other main rule schemas are (de)complexation rules, like A + B => A-B for the
complexation of A and B, (de)phosphorylation rules, like A =[B]=> A~{p} for
the phosphorylation of A catalyzed by the kinase B, and transport rules, like
A::nucleus => A::cytoplasm for the transport of A from the nucleus to the
cytoplasm.

Reactions can be given kinetic expressions. For instance,
k*[A]*[B] for A=[B]=>A~{p} specifies a mass action law kinetics with param-
eter k for the reaction. These expressions can be written explicitly, allowing any
kinetics, or using shortcuts like MA(k) for a Mass Action law with parameter k,
or MM(Vm,Km) for a Michaelian kinetics.

For an example of a complete model, we refer to the Appendix A, which
contains a transcription of the model of the cell cycle control of Qu et al. [22],
explained in Sect. 6.

BIOCHAM also offers a rich language of patterns and constraints [23] used
to denote sets of objects or reaction rules, in a concise manner. A rule pat-
tern basically replaces, in a rule expression, some objects by variables, written
$A, $B, and adds constraints on the values these variables can take. For in-
stance, the constraint $A diff $B imposes that the two molecules are different,
or $A more_phos_than $B imposes that $A is more phosphorylated than $B. The
precise description of patterns is however beyond the scope of this article, and
we refer to [14] for details. Patterns are used to write large models in a concise
manner, and to specify the kinds of rules to learn as explained in Sect. 4.

2.2 Boolean Semantics

The most abstract semantics of BIOCHAM rules is the boolean one. In that
semantics, one associates to each BIOCHAM object a boolean variable repre-
senting its presence or absence in the system. Reaction rules are then interpreted



as an asynchronous transition system over states defined by the vector of boolean
variables. A rule such as A+B=>C+D defines four possible transitions correspond-
ing to the complete or incomplete consumption of the reactants A and B. Such
a rule can only be applied when both A and B are present in the current state.
In the next state, C and D are then present, while A and B can either be present
(partial consumption) or absent (complete consumption). This choice is made
in a non-deterministic fashion, in order to over-approximate all the possible be-
haviors of the system. The transition system is asynchronous, only one rule is
applied at a given time, in order to represent the basic biological phenomena such
as competitive inhibition, where a reaction “hides” another one. On the other
hand, the hypothesis of synchrony (i.e. all rules that can be fired in a given state
are fired simultaneously) would not faithfully represent the competition between
reactions.

The boolean semantics is thus highly non-deterministic. The temporal evo-
lution of the system is modeled by the succession of states in a path, and the
different possible behaviors by the non-deterministic choice of a transition at
each step.

The Appendix B shows a standard graphical representation of the model
in Appendix A where the degree of non-determinism can be roughly estimated
visually by the number of edges outgoing from the circular nodes representing
the molecules.

Formally, the boolean semantics of BIOCHAM rules is defined via a Kripke
structure K = (S,R) where S is the set of states defined by the vector of boolean
variables, and R ⊆ S×S is the transition relation between states, supposed to be
total (i.e. ∀s ∈ S,∃s′ ∈ S s.t. (s, s′) ∈ R). When the transition relation defined
by the reaction rules of a BIOCHAM model is not total, it is automatically
completed by loops on states having no successor. A path in K, starting from
state s0 is an infinite sequence of states π = s0, s1, · · · such that (si, si+1) ∈ R
for all i ≥ 0. In the following, we will denote by πk the path sk, sk+1, · · ·.

2.3 Concentration Semantics

The concentration semantics is a more concrete semantics, where one associates
to each BIOCHAM object a real number representing its concentration. Reaction
rules are interpreted with their kinetic expressions by a set of nonlinear ordinary
differential equations (ODE)2. Formally, to a set of BIOCHAM reaction rules
E = {ei for Si => S′i}i=1,...,n with variables {x1, ..., xm}, one associates the
system of ODEs :

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej

2 The kinetic expressions in BIOCHAM can actually contain conditional expressions,
in which case the reaction rules are interpreted by a deterministic hybrid automaton.
For the sake of simplicity, we shall not detail this more general setting here.



where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp.
left) member of rule i.

Given an initial state, i.e. initial concentrations for each of the objects, the
evolution of the system is deterministic, and numerical integration algorithms
compute a time series describing the temporal evolution of the system variables.
The integration methods actually implemented in BIOCHAM are the adaptive
step-size Runge-Kutta method and the Rosenbrock implicit method for stiff
systems, which both produce simulation traces with variable time steps.

Figures 1, 2 and 3 in Sect. 6 show graphical views of the result of such
computations in the model of Qu et al. with different parameter values.

2.4 Population Semantics

The population semantics is the most realistic semantics but also the most diffi-
cult to compute. This semantics associates to each BIOCHAM object an integer
representing the number of molecules in the system. Rules are interpreted as a
continuous time Markov chain where transition probabilities are defined by the
kinetic expressions of BIOCHAM reaction rules.

Stochastic simulation techniques [24] compute realizations of the process.
The results are generally noisy versions of those obtained with the concentration
semantics. However, in models with, for instance, very few molecules of some
kind, qualitatively different behaviors may appear in the stochastic simulation,
and thus justify the recourse to that semantics in such cases. A classical example
is the model of the lambda phage virus [25] in which a small number of molecules,
promotion factors of two genes, can generate an explosive multiplication (lysis)
after a more or less long period of passive wait (lysogeny).

In the population semantics, for a given volume Vi of the location where
the reaction occurs, a concentration C is translated into a number of molecules
N = C×Vi×K, where K is Avogadro’s number. The kinetic expression ei for the
reaction i is converted into a transition rate τi (giving a transition probability
after normalization) as follows [25]:

τi = ei × (Vi ×K)(1−
∑m

k=1
li(xk)) ×

m∏
k=1

(!li(xk))

where li is the stoichiometric coefficient of the reactant xk in the reaction rule
i. In particular we have:
– τi = ei for reactions of the form A =>...,
– τi = ei

Vi×K for reactions of the form A+B=>...,
– τi = 2× ei

Vi×K for reactions of the form A+A=>...,
– etc.

3 BIOCHAM’s Description Language of Biological
Properties

A second language based on temporal logic is used in BIOCHAM to formalize the
biological properties of a system. The temporal logics CTL (Computation Tree



Logic), LTL (Linear Time Logic) and PLTL (Probabilistic LTL) with numerical
constraints are used in the three semantics respectively. They are used to express
in a formal manner the biological properties of the system that the model is
supposed to capture. These properties correspond to the biological experiments
(observations and measures done in wild-life or mutated organisms, etc.) that
are used to build and validate the model.

Their formalization makes it possible to consider these properties as a spec-
ification to be preserved through operations of model correction, refinement,
simplification or composition. The possibility to verify automatically such a
specification with model-checking techniques opens the way to the curation,
comparison and re-use of different models in a much more systematic fashion
than what the current state-of-the-art permits.

3.1 CTL for the Boolean Semantics

The Computation Tree Logic CTL∗ [15] is an extension of classical logic that
allows reasoning about an infinite tree of state transitions. It uses operators
about branches (non-deterministic choices) and time (state transitions). Two
path quantifiers A and E are thus introduced to handle non-determinism: Aφ
meaning that φ is true on all branches, and Eφ that it is true on at least one
branch. The time operators are F,G,X,U and W ; Xφ meaning φ is true at the
next transition, Gφ that φ is always true, Fφ that φ is eventually true, φ U ψ
meaning φ is always true until ψ becomes true, and φ W ψ meaning φ is always
true until ψ might become true. In this logic, Fφ is equivalent to true U φ, φ W ψ
to (φ U ψ)|Gφ, and the following duality properties hold: !(EF (φ)) = AG(!φ),
!(E φ U ψ) = A(!ψ W !φ) and !(Eφ W ψ) = A(!ψ U !φ), where ! denotes
negation.

In the CTL fragment of CTL∗ used in BIOCHAM for implementation rea-
sons, each temporal operator must be preceded by a path operator, and each
path operator has to be immediately followed by a temporal operator. Table
1 defines the truth value of a formula in a Kripke structure where states are
defined by boolean variables.

A BIOCHAM model M is defined by a set of rules and a set of possible initial
states. The rules of M define the Kripke structure K associated to the model.
As the initial state may not be completely defined, we distinguish between the
truth of a formula φ in all initial states of M, noted M |= Ai φ (or simply
M |= φ), and the truth of φ in some initial state of M, noted M |= Ei φ.

We refer to [7, 26, 13, 23], Sect. 6.3 and to Appendix A for examples of bi-
ological properties of a system expressed by CTL formulae. Some of the most
used CTL formulae are abbreviated in BIOCHAM as follows:

– reachable(P) stands for EF (P );
– steady(P) stands for EG(P );
– stable(P) stands for AG(P );
– checkpoint(Q,P) stands for !E(!Q U P );
– oscil(P) stands for AG((P ⇒ EF !P ) ∧ (!P ⇒ EF P )).



s |= α iff α is a propositional formula true in the state s,
s |= Eψ iff there exists a path π starting from s s.t. π |= ψ,
s |= Aψ iff for all paths π starting from s, π |= ψ,
s |=!ψ iff s 6|= ψ,
s |= ψ & ψ′ iff s |= ψ and s |= ψ′,
s |= ψ | ψ′ iff s |= ψ or s |= ψ′,
s |= ψ ⇒ ψ′ iff s |= ψ′ or s 6|= ψ,

π |= φ iff s |= φ where s is the first state of π,
π |= Xψ iff π1 |= ψ,

π |= Fψ iff there exists k ≥ 0 s.t. πk |= ψ,

π |= Gψ iff for all k ≥ 0, πk |= ψ,

π |= ψ U ψ′ iff there exists k ≥ 0 s.t. πk |= ψ′ and πj |= ψ for all 0 ≤ j < k.

π |= ψ W ψ′ iff either there exists k ≥ 0 s.t. πk |= ψ′ and πj |= ψ for all 0 ≤ j < k,

or for all k ≥ 0, πk |= ψ.
π |=!ψ iff π 6|= ψ,
π |= ψ & ψ′ iff π |= ψ and π |= ψ′,
π |= ψ | ψ′ iff π |= ψ or π |= ψ′,
π |= ψ ⇒ ψ′ iff π |= ψ′ or π 6|= ψ,

Table 1. Inductive definition of the truth value of a CTL∗ formula in a given state s
or path π, for a Kripke structure K.

– loop(P,Q) stands for AG((P ⇒ EF Q) ∧ (Q⇒ EF P )).

Without strong fairness assumption, it is worth noting that the last two ab-
breviations are actually necessary but not sufficient conditions for oscillations.
The correct formula for oscillations is indeed a CTL∗ formula that cannot be
expressed in CTL: EG((P ⇒ F !P ) ∧ (!P ⇒ F P )) [27].

The abbreviations can be used inside CTL formulae. For instance, the formula
reachable(steady(P)) expresses that the steady state denoted by formula P
is reachable, or the formula AG(!P -> checkpoint(Q,P)) expresses that Q is a
checkpoint for P not only in the initial state but in all reachable states.

3.2 LTL with Numerical Constraints for the Concentration
Semantics

The Linear Time Logic, LTL is the fragment of CTL∗ that uses only temporal
operators. A first-order version of LTL is used to express temporal properties
about the molecular concentrations in the simulation trace. A similar approach
is used in the DARPA BioSpice project [11]. The choice of LTL is motivated by
the fact that the concentration semantics given by ODEs is deterministic, and
there is thus no point in considering path quantifiers.

The version of LTL with arithmetic constraints we use, considers first-order
atomic formulae with equality, inequality and arithmetic operators ranging over
real values of concentrations and of their derivatives. For instance F([A]>10)



expresses that the concentration of A eventually gets above the threshold value
10. G([A]+[B]<[C]) expresses that the concentration of C is always greater than
the sum of the concentrations of A and B. Oscillation properties, abbreviated
as oscil(M,K), are defined as a change of sign of the derivative of M at least
K times:
F((d[M]/dt > 0) & F((d[M]/dt < 0) & F((d[M]/dt > 0)...))). The abbre-
viated formula oscil(M,K,V) adds the constraint that the maximum concentra-
tion of M must be above the threshold V in at least K oscillations.

For practical purposes, some limited forms of quantified first-order LTL for-
mulae are also allowed. As an example of this, constraints on the periods of
oscillations can be expressed with a formula such as period(A,75), defined as
∃t ∃v F (Time = t & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0) & F (Time =
t+ 75 & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0))) where Time is the time
variable.

Note that the notion of next state (operator X) refers to the state of the
following time point computed by the (variable step-size) simulation, and thus
does not necessarily imply real-time neighborhood. Nevertheless, for computing
for instance local maxima as in the formula above, the numerical integration
methods do compute the relevant time points with a good accuracy.

3.3 PLTL with Integer Constraints for the Population Semantics

For the stochastic semantics, it is natural to consider the PCTL logic [28] which
basically replaces the path operators of CTL, E and A, by the operator P./p,
which represents a constraint ./p on the probability that the formula under P./p

is true. For instance, A(ψ U ψ′) becomes P≥1(ψ U ψ′), i.e. the probability that
ψ U ψ′ is realized is 1. The atomic formulae considered here are first-order
formulae with arithmetic constraints, ranging on integers representing numbers
of molecules.

However, for efficiency reasons explained in Sect. 5.3, a fragment of PCTL
formulae, called PLTL, in which the P./p operator can only appear once as head
of the formula, is actually considered in BIOCHAM.

4 Learning Reaction Rules from CTL Properties

The description language of biological properties based on temporal logic can be
used to specify the expected behavior of a system, and to let a machine learning
algorithm automatically search for possible model revisions. In BIOCHAM, the
structural learning of reaction rules relies on the boolean semantics. A CTL
specification is thus used to formalize the expected temporal properties of the
model, in the process of learning rules.

4.1 Symbolic Model-Checking Algorithm

The learning algorithm necessitates to check the truth of CTL formulae, and
makes use of counter-examples to direct the search of corrections to the model.



In BIOCHAM, the CTL formulae are evaluated through an interface to the
symbolic model-checker NuSMV [29]. NuSMV also computes counter-examples
in the form of pathways, which is used, for instance, in the search process to
revise the model.

The performances obtained on a large model of the cell cycle control after
Kohn’s map [30], involving 800 rules and 500 variables, have been shown to be
of the order of a few tenths of seconds to compile the model, and check simple
CTL formulae [26]. These performances are nevertheless far below those obtained
classically with NuSMV on much more strongly structured models of circuits or
programs. One characteristic of the boolean models of BIOCHAM is their very
high degree of non-determinism. This may lead to performance problems on
small size models having a high number of parallel pathways, which is the case
for instance in the MAPK model of [31]. These difficulties are recognized in
the symbolic model-checking community [32] and biochemical networks provide
interesting examples of problems with a high circuit width [33]. On the other
hand, the most efficient model-checking tools based on a representation with
Petri nets assume a 1-boundedness condition stating that at most one token
can be present in a place [34], which is generally not satisfied in biochemical
networks.

4.2 Learning One Rule

The boolean semantics of BIOCHAM can be used straightforwardly to search for
one rule to add to, or suppress from, a model in order to satisfy a CTL specifi-
cation. The search can be restricted by providing rule patterns with constraints.

The command learn_one_addition(reaction_pattern,spec_CTL) enumer-
ates each instance of the rule pattern provided as first argument, that, when
added to the model, is sufficient to satisfy the CTL specification given as second
argument (or given implicitly by the command add spec if there is no second
argument). The time complexity grows linearly in the number of instances of the
rule pattern, which is thus the main complexity factor added to the checking of
the CTL specification.

The command learn_one_deletion(reaction_pattern,spec_CTL) enumer-
ates each instance of the rule pattern that is sufficient to delete from the model
to satisfy the CTL specification. Here, the time complexity added to the checking
of the CTL specification is linear in the number of rules in the model.

It is worth noting that, by iterating the search of rules that can be deleted in
a model while preserving its specification, one can easily implement a command
reduce_model(spec_CTL) to compute a minimal subset of rules satisfying a
given specification.

4.3 Learning Several Rules

In order to guide the automatic search for the addition and deletion of several
rules, the CTL formulae can be divided into three classes. The ECTL class
regroups CTL formulae that do not contain the A operator (i.e. no positive



occurrence of A or negative occurrence of E). The ACTL class regroups CTL
formulae that do not contain the E operator. The other formulae are regrouped
in the UCTL class. The reason for this classification is that, in order to satisfy
a false ACTL formula it is necessary to delete rules from the model, whereas to
satisfy a false ECTL formula, it is necessary to add rules to the model:

Proposition 1. Let K = (S,R) and K ′ = (S,R′) be two Kripke structures such
that R ⊆ R′. For any ECTL formula φ, if s 6|=K′ φ then s 6|=K φ. For any ACTL
formula φ, if s 6|=K φ then s 6|=K′ φ.

Proof. Let us prove the proposition for ECTL formulae by contrapositive, i.e.
if s |=K φ then s |=K′ φ. The proof is done by induction on the size of the
proof of s |=K φ, with φ supposed to be in negation-free form, except inside
propositional formulae, and using only the temporal operators X, G and U ,
thanks to the equivalences and duality properties given in section 3.1.

If φ = α is propositional, we have α is true in the state s, and since s is also
a state of K ′ we get s |=K′ φ.

If φ = ψ1 & ψ2 (resp. ψ1 | ψ2) then we have by definition s |=K ψ1 and
(resp. or) s |=K ψ2, by induction hypothesis we get s |=K′ ψ1 and (resp. or)
s |=K′ ψ2 and we can conclude that s |=K′ φ.

The only remaining case is when φ = Eψ with ψ starting with a temporal
operator. We know that there exists a path π of K such that π |=K ψ. Note that
since R ⊆ R′, π is also a path in the structure K ′. Now,

– if ψ = Xψ′, we have π1 |=K ψ′, by induction hypothesis, π1 |=K′ ψ′ and
since π is a path of K ′ we get π |=K′ Xψ′, q.e.d.

– if ψ = Gψ′, we have πn |=K ψ′ for all n ≥ 0, by applying the induction
hypothesis to all states πn, we get πn |=K′ ψ′ for all n ≥ 0, and since π is a
path of K ′ we get π |=K′ Gψ′, q.e.d.

– if ψ = ψ′ U ψ′′, we have πn |=K ψ′′ for some n ≥ 0 and πm |=K ψ′ for all
0 ≤ m < n, by applying the induction hypothesis to all πm for 0 ≤ m ≤ n
we get, πn |=K′ ψ′′, and πm |=K′ ψ′ for all 0 ≤ m < n, thus π |=K′ ψ′ U ψ′′,
q.e.d.

For an ACTL formula φ, we once again prove the proposition by contrapos-
itive and induction on the proof of s |=K′ φ. The only difference with the above
proof is when we get to the case φ = Aψ, we have to prove that π |=K ψ for all
paths π starting from s in K but since they are all paths of K ′ we can apply the
induction hypothesis and the same reasoning as above applies. We get s |=K φ,
q.e.d. ut

Following this proposition, model revision algorithms allowing to add and
delete several rules in a model, can be defined by fixing strategies for choosing
the next CTL formula to satisfy, and for searching the rules to add to, or delete
from the the model, according to the class of the formula.

In BIOCHAM, the command

revise_model(reaction_pattern, spec_CTL)



implements such a model revision algorithm. It enumerates sets of rule additions
and deletions that are sufficient to satisfy the specification. The CTL specifica-
tion, as well as a reaction pattern for the rules allowed to be added or deleted,
can be provided as arguments in the command.

To satisfy an unsatisfied ECTL formula, the algorithm tries to add one rule
among the instances of the pattern, and checks it by model-checking. To sat-
isfy an unsatisfied ACTL formula, the algorithm searches for rule deletions only,
among the pattern instances that are in the set of the rules provided by the
model-checker as a counter-example. To satisfy an unsatisfied UCTL formula,
the algorithm tries both adding and removing rules, as described formally be-
low. More than one set of additions/deletions being possible at each step, the
algorithm implements a backtracking procedure to explore all choices.

ECTL formulae are treated first, UCTL second and then ACTL. However,
the deletions necessary to satisfy an ACTL formula are allowed to dissatisfy
some ECTL or UCTL formulae, in which case they are treated again with the
constraint not to dissatisfy the ACTL formulae already satisfied.

Formally, we present the model revision algorithm by a non-deterministic
transition system over configurations of the form [Qt, Q,R] where:

– R is the current set of reaction rules.
– Qt = (Et, Ut, At) is the set of treated CTL formulae that are true in R. These

formulae are sorted in three groups: the set Et of ECTL formulae, the set
Ut of unclassified (UCTL) formulae, and the set At of ACTL formulae.

– Q = (E,U,A) is the set of untreated CTL formulae, sorted similarly in three
groups of ECTL, UCTL and ACTL formulae.

By a slight abuse of notation, we write R |= φ if the rule set R satisfies the CTL
formula φ. The rules considered for addition (noted r in the transitions E’ and
U’ below) are instances of the rule pattern. The rule sets considered for deletion
(noted Re in transitions U” and A’ below) are chosen among the rules computed
by the model-checker as a counter-example to the formula.

The initial configuration is the configuration [(∅, ∅, ∅), (E,U,A), R], that is,
we start with a model R and an untreated CTL specification. The model revision
algorithm performs the following transitions:

E: [(Et, Ut, At), (E ∪ {e}, U,A), R] → [(Et ∪ {e}, Ut, At), (E,U,A), R]
if R |= e

E’: [(Et, Ut, At), (E ∪ {e}, U,A), R] → [(Et ∪ {e}, Ut, At), (E,U,A), R ∪ {r}]
if R 6|= e and ∀f ∈ {e} ∪ Et ∪ Ut ∪At R ∪ {r} |= f

U: [(Et, Ut, At), (∅, U ∪ {u}, A), R] → [(Et, Ut ∪ {u}, At), (∅, U,A), R]
if R |= u

U’: [(Et, Ut, At), (∅, U ∪ {u}, A), R] → [(Et, Ut ∪ {u}, At), (∅, U,A), R ∪ {r}]
if R 6|= u and ∀f ∈ {u} ∪ Et ∪ Ut ∪At R ∪ {r} |= f

U”: [(Et, Ut, At), (∅, U ∪ {u}, A), R ∪Re] → [(Et, Ut ∪ {u}, At), (∅, U,A), R]
if R ∪Re 6|= u and ∀f ∈ {u} ∪ Et ∪ Ut ∪At R |= f

A: [(Et, Ut, At), (∅, ∅, A ∪ {a}), R] → [(Et, Ut, At ∪ {a}), (Ep, Up, A), R]
if R |= a



A’: [(Et∪E′, Ut∪U ′, At), (∅, ∅, A∪{a}), R∪Re]→ [(Et, Ut, At∪{a}), (E′, U ′, A),
R]
if R ∪Re 6|= a, ∀f ∈ {a} ∪ Et ∪ Ut ∪At R |= f and ∀g ∈ E′ ∪ U ′ R 6|= g.

Proposition 2 (termination and correctness). Given a CTL specification
(E,U,A), the model revision algorithm terminates in at most |A|∗|E∪U | transi-
tions. Moreover, if the terminal configuration is of the form [(Et, Ut, At), (∅, ∅, ∅),
R] then the revised model R satisfies the specification (Et, Ut, At) which is equiv-
alent to the initial specification (E,U,A).

Proof. The correctness of the algorithm comes from the fact that each transition
maintains only true formulae in the satisfied set, which can be trivially checked
for each transition. Moreover, the rules merely exchange formulae between the
untreated and satisfied parts. The complete CTL specification is thus preserved
in the union of the satisfied and untreated sets. Therefore if the algorithm termi-
nates in a configuration containing no untreated formulas, [(Et, Ut, At), (∅, ∅, ∅),
R], its rule set R satisfies the specification (Et, Ut, At) that is equivalent to the
original specification.

The termination of the algorithm is proved by considering the lexicographic
ordering over the couple < a, n > where a is the number of untreated ACTL
formulae, and n is the number of untreated ECTL and UCTL formulae. The
transitions E, E’, U, U’, and U” do not change a but strictly decrease n. The
transition A strictly decreases a (and does not change n) while the transition
A’ strictly decreases a. Hence, the complexity measure strictly decreases at each
transition, and, as n is bounded by the initial number of ECTL and UCTL
formulae, there is at most a ∗ n transitions. ut

This algorithm thus finitely enumerates model revisions that satisfy a given
specification. However, this algorithm is incomplete for two reasons. First, the
satisfaction of an ECTL or an UCTL formula is searched by adding only one rule
to the model (transition E’ and U’), whereas several rules might be needed. If this
is the case for all ECTL and UCTL formulae, the algorithm terminates in a failed
configuration containing unsatisfied formulae. Second, in the Kripke structure
associated to the BIOCHAM model, the accessibility relation is completed into a
total relation (which is necessary for the definition of Kripke structures). When
a rule is deleted, another rule (loop) may thus be automatically added, thereby
invalidating the assumptions of proposition 1.

This algorithm is therefore a heuristic algorithm which may fail in cases
where the CTL specification is satisfiable. It is nevertheless usable in practice as
illustrated in Sect. 6, and has been actually designed from our practical experi-
ence.

The search for model revisions is obviously a very computation intensive
process that can be controlled here with the patterns given for the rules allowed
to be added or deleted. These patterns limit the branching factor of the search
tree explored by the algorithm, while the depth is bounded by the product of the
number of ACTL formulae and the number of other formulae in the specification.



5 Learning Parameter Values from Constraint LTL
Properties

In the same manner as for CTL, one can consider the LTL formulae in the
concentration semantics as a specification of the expected behavior of a numerical
model. Using constraint model-checking techniques, this specification can be
checked for correctness. When it is not satisfied, a search algorithm can be used
to revise the parameter values.

5.1 Constraint LTL Model-Checking Algorithm

Under the hypothesis that the initial state is completely defined, numerical inte-
gration methods (such as Runge-Kutta or Rosenbrock methods) provide a dis-
crete simulation trace. This trace constitutes a linear Kripke structure in which
LTL formulae can be interpreted. Since constraints refer not only to concentra-
tions, but also to their derivatives, we consider traces of the form

(< t0, x0, dx0/dt >,< t1, x1, dx1/dt >, ...)

At each time point, ti, the trace associates the concentration values of the xi’s
and the values of their derivatives dxi/dt. It is worth noting that in variable step
size integration methods, the step size ti+1− ti is not constant and is computed
following an estimation of the error made by the discretization.

To verify a temporal property φ within a finite time horizon, one can thus
use the following trace-based constraint model-checking algorithm:

1. compute a finite simulation trace;
2. label each trace point by the atomic sub-formulae of φ that are true at this

point;
3. add sub-formulae of the form Fφ (resp. Xφ) to the predecessors (resp. im-

mediate predecessor) of a point labeled with φ;
4. add sub-formulae of the form φ1 U φ2 to the points preceding a point labeled

with φ2 as long as φ1 holds;
5. add sub-formulae of the form Gφ to the last state if it is labeled by φ, and

to the predecessors of the points labeled by Gφ as long as φ holds.

Being limited to finite simulation traces, and since Gφ =!F (!φ), we choose to
label by Gφ the last state if it satisfies φ.

The rationale of this algorithm is that the numerical trace contains enough
relevant points, and in particular those where the derivative changes abruptly,
to correctly evaluate temporal logic formulae. This has been very well verified
in practice with various examples of published mathematical models.

5.2 Parameter Search

One can use constraint LTL model-checking to design a generate and test algo-
rithm for finding parameter values such that a given LTL specification is satisfied.



A set of parameters, together with intervals of possible values and a precision
parameter, are input to an enumeration algorithm. All value combinations are
then scanned with a step size corresponding to the given precision, until the
specification is satisfied. The syntax of the command is:

learn_parameter(parameters, ranges, precision, spec_LTL, time)

where the last argument is the time horizon of the simulation.
This search procedure actually replicates and automates part of what the

modeler currently does by hand: trying different parameter values, between
bounds that are thought reasonable, or computed by other methods such as
bifurcation diagrams, in order to obtain behaviors in accordance with the ex-
perimental knowledge. BIOCHAM provides a way to explore much faster this
parameter space, once the effort for formalizing the expected behavior in LTL is
done.

The main novel feature of this method is its capability to express and combine
in LTL both qualitative and quantitative constraints on the expected behavior of
the model. Section 6.5 shows an example where this algorithm already provides
interesting solutions for a two-parameter search.

The computational complexity grows linearly in the number of combinations
of parameter values to try, that is in O(dn) where n is the number of parameter
values to find and d the number of values to try for each parameter. The difficulty
to use better search algorithms than generate-and-test (such as local search or
simulated annealing for instance) comes from the criterion of satisfaction of LTL
formulae which is naturally boolean and for which a multi-valued measure of
satisfaction can hardly be defined.

5.3 Constraint PLTL Model-Checking Algorithm

The existing probabilistic model-checking tools, like that of PRISM [35], do not
handle well highly non-deterministic examples, nor those where variables have
a large domain as it is the case in BIOCHAM’s population semantics. This led
us to actually consider the PLTL fragment of PCTL formulae in which the P./p

operator can only appear once as head of the formula, and to use a Monte-Carlo
method as done in the APMC system [36].

To evaluate the probability of realization of the underlying LTL formula,
BIOCHAM samples a certain number of stochastic simulations using standard
algorithms like that of Gillespie [24] or of Gibson [37]. The outer probability is
then estimated by counting. It is worth noting that this method provides a real
estimate of realization of the LTL formula, whereas PCTL expresses the boolean
satisfaction of a probability constraint (./p) over the formula.

In principle, the Monte-Carlo algorithm can thus be used for model-checking
and learning along the same lines as in the concentration semantics. However,
both the stochastic simulation process and the model-checking process are com-
putationally more expensive than in the concentration semantics by several or-
ders of magnitude. For this reason, our machine learning approach is currently
not practical in the stochastic population semantics.



6 Example of the Cell Cycle Control

In this section, we illustrate the use of our machine learning techniques based
on temporal logic specifications, through an example of the cell cycle control
developed by Qu et al. ([22]).

6.1 The Model of Qu et al. Transcribed in BIOCHAM

The model of Qu et al. describes the transitions between the different phases
of the cell cycle. The cell cycle of somatic cells is usually composed of two
alternate phases: the DNA synthesis (S phase) and the chromosome segregation
and mitosis (M phase). These phases are separated by gap phases (G1 and G2)
that ensure that one phase is finished before the other one starts.

The model of Qu presents the dynamics of one transition, either G1/S or
G2/M, depending on the type of cyclin used in the model, i.e. CycE or CycB
respectively. Here we choose to deal with the G2/M transition and thus with the
B-type cyclin.

In this model, the cyclin is continuously synthesized and degraded, according
to the following rules:

k1 for _=>CycB.

k2*[CycB] for CycB=>_.

k2u*[APC]*[CycB] for CycB=[APC]=>_.

The cyclin associates with a cyclin-dependent kinase called CDK to form a
complex which plays a major role in the control of the transition.

(k3*[CDK]*[CycB],k4*[CDK-CycB~{p1,p2}]) for CDK+CycB<=>CDK-CycB~{p1,p2}.

Qu’s model details the network of proteins that regulates the activity of the
complex. This activity depends on the phosphorylation state of the complex, the
presence of an inhibitor and the availability of the cyclin component. For that
reason, Qu considered three positive (1-3) and one negative (4) feedback loops :

1. the active form CycB-CDK~{p1} is inactivated by the Wee1 kinase, itself in-
activated by CycB-CDK~{p1};

[Wee1]*[CycB-CDK~{p1}] for CycB-CDK~{p1}=[Wee1]=>CycB-CDK~{p1,p2}.

cw*[CycB-CDK~{p1}]*[Wee1] for Wee1=[CycB-CDK~{p1}]=>Wee1~{p1}.

2. similarly, the Cdc25 phosphatase (C25~{p1,p2}) activates CycB-CDK~{p1}
which in turn activates Cdc25;

k5u*[C25~{p1,p2}]*[CycB-CDK~{p1,p2}]

for CycB-CDK~{p1,p2}=[C25~{p1,p2}]=>CycB-CDK~{p1}.

cz*[CycB-CDK~{p1}]*[C25]

for C25=[CycB-CDK~{p1}]=>C25~{p1}.

cz*[CycB-CDK~{p1}]*[C25~{p1}]

for C25~{p1}=[CycB-CDK~{p1}]=>C25~{p1,p2}.



3. when present, an inhibitor, CKI, binds to the active form of the complex to
form an inactive trimer (CKI-CycB-CDK~{p1}) that is recognized for degra-
dation when phosphorylated by CycB-CDK~{p1} itself;

(k14*[CKI]*[CycB-CDK~{p1}],k15*[CKI-CycB-CDK~{p1}])

for CKI+CycB-CDK~{p1}<=>CKI-CycB-CDK~{p1}.

ci*[CycB-CDK~{p1}]*[CKI-CycB-CDK~{p1}]

for CKI-CycB-CDK~{p1}=[CycB-CDK~{p1}]=>(CKI-CycB-CDK~{p1})~{p2}.

k16*[(CKI-CycB-CDK~{p1})~{p2}]

for (CKI-CycB-CDK~{p1})~{p2}=>CDK.

4. CycB-CDK~{p1} activates APC which is responsible for its degradation.

(([CycB-CDK~{p1}]^2)/(a^2+([CycB-CDK~{p1}]^2)))/tho

for _=[CycB-CDK~{p1}]=>APC.

k7u*[APC]*[CycB-CDK~{p1}] for CycB-CDK~{p1}=[APC]=>CDK.

The Appendix A contains the complete transcription of Qu’s model, with
the list of kinetic parameter values, and with the definition of an initial state.
In the initial state, the cyclin-dependent kinase CDK, the Wee1 kinase and the
cyclin inhibitor CKI are present with respective concentrations 200, 1 and 1, all
the other molecules being absent (concentrations set to 0).

In addition, a BIOCHAM model can contain a formal specification in tempo-
ral logic, accounting for the relevant biological properties captured by the model.
For instance, the activation of CycB-CDK~{p1}, the oscillatory behavior of the
active form of the complex, or the compulsory role of CycB-CDK~{p1} in APC
activation are formalized as follows:

reachable(CycB-CDK~{p1}).

oscil(CycB-CDK~{p1}).

checkpoint(CycB-CDK~{p1},APC).

The command genCTL(CTLpattern) can also be used to automatically gen-
erate a specification from the reaction rules. This specification contains, for each
compound, all the reachable, oscil, and checkpoint properties (or any other
properties specified by a pattern) that are true in the model. Appendix C shows
the specification generated from the rules in this example.

6.2 Boolean Abstraction

Qu’s model was conceived to specifically study numerical aspects of the cell cycle.
Reasoning about such models at a boolean level may lead to some problems. For
instance, a fast and a slow reaction are treated equally in the boolean semantics
whereas their kinetics defines which one is preponderant. A property revealing
the difference between these two reactions would then be invalid in the boolean
semantics, which can be checked by BIOCHAM. In that case, the model needs
to be adapted.

For example, in most organisms, Cdc25 (more precisely here C25~{p1,p2})
is necessary for the activation of the complex CycB-CDK~{p1}. This property



can be checked in the numerical model by blocking C25~{p1,p2} (setting to 0
the kinetic parameters of the rules producing this compound). In the numerical
model, the activation of CycB-CDK~{p1} is done by a (fast) reaction involving the
phosphatase C25~{p1,p2} and by a background reaction (slower by one order
of magnitude). In the boolean semantics however, the property
checkpoint(C25~{p1,p2},CycB-CDK~{p1}) is false since the second pathway
does not use C25~{p1,p2}.

That property can be enforced by adding it as a specification and by revising
the model. The command revise model produces the following output3:

biocham:add_spec(Ai(AG(!(CycB-CDK~{p1})

->checkpoint(C25~{p1,p2},CycB-CDK~{p1})))).

biocham: revise_model.

Success

Time: 441.00 s

40 properties treated

Modifications found:

Deletion(s):

k5*[CycB-CDK~{p1,p2}] for CycB-CDK~{p1,p2}=>CycB-CDK~{p1}.

k15*[CKI-CycB-CDK~{p1}] for CKI-CycB-CDK~{p1}=>CKI+CycB-CDK~{p1}.

Addition(s):

The solution found consists in deleting two rules: the first one corresponding
to the background activation of the complex CycB-CDK~{p1} and the second
one corresponding to another pathway using the dissociation of the inactive
trimer. With this modification, the revised model satisfies the complete CTL
specification.

6.3 Rule Inference

The automatic search for rules can also be used to complete an erroneous model.
To illustrate this, let us delete the rule of CDK-CycB~{p1} activation by Cdc25:
CDK-CycB~{p1,p2}=[C25~{p1,p2}]=>CDK-CycB~{p1}.
and let the system recover the rule from the specification. After deletion, the
model does not verify the CTL specification anymore. When asking to revise the
model, the system recovers the deleted rule:

biocham: revise_model.

Success

Time: 76.00 s

40 properties treated

Modifications found:

Deletion(s):

Addition(s):

CycB-CDK~{p1,p2}=[C25~{p1,p2}]=>CycB-CDK~{p1}.

3 The CPU times indicated in this paper have been obtained on a Pentium IV, 1,7GHz,
1GB RAM, under Linux.



When asking more precisely to learn one rule (as described in Sect. 4.2), the
system tests 464 rules, in 25 seconds, and returns only one possible answer in
this example. To reduce the time of search (and the number of outputs if several
are found), one can also make the rule pattern more precise, like
learn_one_addition(dephosphorylation), where the dephosphorylation pat-
tern is $A~? =[?]=> $A. In that case, fewer rules (80) are tested, and the missing
rule is found in less than 5 seconds.

6.4 Model Refinement

The automated method described for learning one rule and revising models can
also be used in an interactive fashion to refine a model, for instance by adding
a molecule to the model.

Let us include the protein CycE in Qu’s generic cell cycle in order to re-
produce the G1/S transition. New properties are formulated and added to the
specification. As it is the case for CycB, we assume that CycE is only active in a
complex with another cyclin-dependent kinase, called for our purpose CDKp, and
the complex can be inactivated by an inhibitor CKI:

Ai(reachable(CycE-CDKp)), Ai(oscil(CycE-CDKp)),

Ai(reachable(CKI-CycE-CDKp)), Ai(oscil((CycE-CDKp)~{p1})),

Ai(reachable((CycE-CDKp)~{p1})), Ai(loop(CycE-CDKp,(CycE-CDKp)~{p1})),

Rules for synthesis and degradation of CycE and CDKp are added. The spec-
ification is no longer verified and with revise model, BIOCHAM is asked to
propose some rules to correct the model.

biocham: revise_model.

Success

Time: 158.00 s

6 properties treated

Modifications found:

Deletion(s):

Addition(s):

CDKp+CycE=>CDKp-CycE.

CKI+CDKp-CycE=>CDKp-CKI-CycE.

CDKp-CycE=>(CDKp-CycE)~{p1}.

(CDKp-CycE)~{p1}=>CDKp-CycE.

The rules found are quite simple and constitute a first step for refining the
model. This first solution found is followed by roughly 304 other solutions cor-
responding to 30 different ways to achieve the same results for each rule. For
instance the inhibition of (CDKp-CycE)~{p1} performed by dephosphorylation
in the last rule, can be performed as well by other complexation, or degradation
rules. One way to restrict the combinatorics of these revisions is thus to refine the
rule patterns given for the search. Another way is to augment the specification
if more knowledge about the proteins and their activity is available.



6.5 Parameter Search

Now to illustrate the parameter search method, let us consider the estimation of
the two parameters k1 and k5u. These parameters, studied in lengthy details in
Qu’s article, correspond respectively to the parameter for CycB synthesis, and to
the rate of the CycB-CDK~{p1} activation by C25~{p1,p2}. When set to 0, the
numerical simulation exhibits a stable steady state, as shown in Fig. 1.

Fig. 1. Behavior obtained with parameter values: k5u=0 and k1=0

In order to find satisfactory values, the desired oscillation property may be
expressed as follows: the concentration of the complex CycB-CDK~{p1} oscil-
lates at least twice in the time horizon of 300 time units, with peaks above the
threshold value 10. Based on its LTL formalization, a search is done for the two
parameters k5u and k1 on a domain of (0,10) and (0,500) respectively, among
20 different possibilities for each parameter:

biocham: learn_parameters([k5u,k1],[(0,10),(0,500)], 20,

oscil(CycB-CDK~{p1},2,10.0),300).

First values found that make oscil(CycB-CDK~{p1},2,10.0) true:

parameter(k5u,0.5).

parameter(k1,350).

Search time: 21.54 s

BIOCHAM proposes the first solution that satisfies the specification, here
k5u=0.5 and k1=350. The simulation is depicted in Fig. 2.

The specification can be further refined to enforce a period of approximately
65 time units:

biocham: learn_parameters([k5u,k1],[(0,10),(0,500)], 20,



Fig. 2. Behavior obtained with parameter values k5u=0.5, k1=350 found in response
to the query oscil(CycB-CDK~{p1},2,10.0) over a time horizon of 300 t.u.

period(CycB-CDK~{p1},65), 300).

First values found that make period(CycB-CDK~{p1},65) true:

parameter(k5u,2).

parameter(k1,150).

Search time: 236.37 s

These values produce Fig. 3, and are actually close to the values published by
Qu et al (k5u=1 and k1=300 with an exact period of 67.65 time units). It is worth
noting that they have been produced in response to a request containing both
qualitative (oscillatory behavior) and quantitative (period and threshold values)
aspects, without overspecifying the expected curve of concentration values.

7 Conclusion

Temporal logic is a powerful formalism for expressing the biological properties of
a living system, such as state reachability, checkpoints, stability, oscillations, etc.
This can be done both qualitatively and quantitatively, by considering first-order
temporal logic formulae with numerical constraints.

In this paper we have shown how temporal logic can be turned into a specifi-
cation language of the behavior of a biochemical system, and how model-checking
and machine learning techniques can be jointly used to infer reaction rules, or
more generally model revisions, in order to satisfy a temporal logic specification.
More specifically we have described a model revision algorithm which, given a
boolean model and a CTL specification, enumerates a set of solutions in the form



Fig. 3. Behavior obtained with parameter values k5u=2, k1=150 found in response to
the query period(CycB-CDK~{p1},65) over a time horizon of 300 t.u.

of sets of rules to add to, or delete from, the model in order to satisfy the speci-
fication. The depth of the search tree explored by this algorithm is bounded by
a∗n where a is the number of ACTL formulae and n is the number of other CTL
formulae in the specification. The source of incompleteness of this algorithm has
been analyzed, leaving place for further improvements.

Similarly, we have presented an algorithm which, given a numerical model, a
value range for some parameters and an LTL specification with numerical con-
straints over concentrations, searches for parameter values satisfying the speci-
fication.

These algorithms have been illustrated with different scenarios of specifica-
tion, rule inference, model refinement and parameter learning in an example of
the cell cycle control after Qu et al. [22].

These first results implemented in BIOCHAM are quite encouraging and
motivate us to go further in the direction of the formal specification of biolog-
ical systems and in the improvement of the search algorithms. They also show
some limitations concerning the boolean abstraction level used to reason about
biochemical systems. There are many ways to define a boolean model from a nu-
merical model. The boolean abstraction currently used in BIOCHAM is a strong
abstraction as it simply forgets the kinetic expressions, and considers all possi-
ble transitions in an equal setting. Less crude abstractions are however possible
and would be technically more effective. We are currently investigating these
abstractions, as well as their formal relationship, in the framework of abstract
interpretation.
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BIOCHAM. In Danos, V., Schächter, V., eds.: CMSB’04: Proceedings of the second
Workshop on Computational Methods in Systems Biology. Volume 3082 of Lecture
Notes in BioInformatics., Springer-Verlag (2004) 172–191

24. Gillespie, D.T.: General method for numerically simulating stochastic time evolu-
tion of coupled chemical-reactions. Journal of Computational Physics 22 (1976)
403–434

25. Gibson, M.A., Bruck, J.: A probabilistic model of a prokaryotic gene and its
regulation. In Bolouri, H., Bower, J., eds.: Computational Methods in Molecular
Biology: From Genotype to Phenotype. MIT press (2000)

26. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling
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A BIOCHAM Model of the cell cycle control after [22]

% Cell cycle Qu et al. 2003 Biophysical journal

% Cyclin

k1 for _=>CycB.

k2*[CycB] for CycB=>_.

k2u*[APC]*[CycB] for CycB=[APC]=>_.

(k3*[CDK]*[CycB],k4*[CycB-CDK~{p1,p2}])

for CDK+CycB<=>CycB-CDK~{p1,p2}.

k5*[CycB-CDK~{p1,p2}] for CycB-CDK~{p1,p2}=>CycB-CDK~{p1}.

k5u*[C25~{p1,p2}]*[CycB-CDK~{p1,p2}]

for CycB-CDK~{p1,p2}=[C25~{p1,p2}]=>CycB-CDK~{p1}.

k6*[CycB-CDK~{p1}] for CycB-CDK~{p1}=>CycB-CDK~{p1,p2}.

[Wee1]*[CycB-CDK~{p1}] for CycB-CDK~{p1}=[Wee1]=>CycB-CDK~{p1,p2}.

k7*[CycB-CDK~{p1}] for CycB-CDK~{p1}=>CDK.

k7u*[APC]*[CycB-CDK~{p1}] for CycB-CDK~{p1}=[APC]=>CDK.

% Cdc25

k8 for _=>C25.

k9*[C25] for C25=>_.

k9*[C25~{p1}] for C25~{p1}=>_.

k9*[C25~{p1,p2}] for C25~{p1,p2}=>_.

bz*[C25] for C25=>C25~{p1}.

cz*[CycB-CDK~{p1}]*[C25] for C25=[CycB-CDK~{p1}]=>C25~{p1}.

az*[C25~{p1}] for C25~{p1}=>C25.

bz*[C25~{p1}] for C25~{p1}=>C25~{p1,p2}.

cz*[CycB-CDK~{p1}]*[C25~{p1}] for C25~{p1}=[CycB-CDK~{p1}]=>C25~{p1,p2}.



az*[C25~{p1,p2}] for C25~{p1,p2}=>C25~{p1}.

% Wee1

k10 for _=>Wee1.

k11*[Wee1] for Wee1=>_.

k11*[Wee1~{p1}] for Wee1~{p1}=>_.

bw*[Wee1] for Wee1=>Wee1~{p1}.

cw*[CycB-CDK~{p1}]*[Wee1] for Wee1=[CycB-CDK~{p1}]=>Wee1~{p1}.

aw*[Wee1~{p1}] for Wee1~{p1}=>Wee1.

% APC

(([CycB-CDK~{p1}]^2)/(a^2+([CycB-CDK~{p1}]^2)))/tho

for _=[CycB-CDK~{p1}]=>APC.

[APC]/tho for APC=>_.

% CKI

k12 for _=>CKI.

k13*[CKI] for CKI=>_.

(k14*[CKI]*[CycB-CDK~{p1}],k15*[CKI-CycB-CDK~{p1}])

for CKI+CycB-CDK~{p1}<=>CKI-CycB-CDK~{p1}.

bi*[CKI-CycB-CDK~{p1}] for CKI-CycB-CDK~{p1}=>(CKI-CycB-CDK~{p1})~{p2}.

ci*[CycB-CDK~{p1}]*[CKI-CycB-CDK~{p1}]

for CKI-CycB-CDK~{p1}=[CycB-CDK~{p1}]=>(CKI-CycB-CDK~{p1})~{p2}.

ai*[(CKI-CycB-CDK~{p1})~{p2}]

for (CKI-CycB-CDK~{p1}){p2}=>CKI-CycB-CDK~{p1}.

k16*[(CKI-CycB-CDK~{p1})~{p2}]

for (CKI-CycB-CDK~{p1})~{p2}=>CDK.

k16u*[APC]*[(CKI-CycB-CDK~{p1})~{p2}]

for (CKI-CycB-CDK~{p1})~{p2}=[APC]=>CDK.

parameter(k1,300). parameter(k5u,1).

parameter(k2,5). parameter(k3,0.15). parameter(k4,30).

parameter(k5,0.1). parameter(k6,1). parameter(k7,10).

parameter(k8,100). parameter(k9,1). parameter(k10,10).

parameter(k11,1). parameter(k12,10). parameter(k13,1).

parameter(k14,1). parameter(k15,1). parameter(k16,2).

parameter(k2u,50). parameter(k7u,0). parameter(k16u,25).

parameter(a,4). parameter(tho,25). parameter(az,10).

parameter(aw,10). parameter(ai,10). parameter(bz,0.1).

parameter(bw,0.1). parameter(bi,0.1). parameter(cz,1).

parameter(cw,1). parameter(ci,1).

% Initial state

present(CDK,200). present(Wee1,1). present(CKI,1).

make_absent_not_present.



B Graphical View of the Model

The Fig. 4 shows a bipartite graph representation of Qu’s model, where the
reaction rules are in rectangular boxes, the molecules are in circular boxes, the
hard lines materialize the reactants and products of the reactions, and the dashed
lines materialize the catalysts.

C CTL Specification

% Simple specification of Qu’s model generated by genCTL

add_specs({

Ei(reachable(CycB)),

Ei(reachable(!(CycB))),

Ai(oscil(CycB)),

Ei(reachable(APC)),

Ei(reachable(!(APC))),

Ai(oscil(APC)),

Ai(AG(!(APC)->checkpoint(CycB-CDK~{p1},APC))),

Ei(reachable(CDK)),

Ei(reachable(!(CDK))),

Ai(oscil(CDK)),

Ei(reachable(CycB-CDK~{p1,p2})),

Ei(reachable(!(CycB-CDK~{p1,p2}))),

Ai(oscil(CycB-CDK~{p1,p2})),

Ei(reachable(CycB-CDK~{p1})),

Ei(reachable(!(CycB-CDK~{p1}))),

Ai(oscil(CycB-CDK~{p1})),

Ei(reachable(C25~{p1,p2})),

Ei(reachable(!(C25~{p1,p2}))),

Ai(oscil(C25~{p1,p2})),

Ai(AG(!(C25~{p1,p2})

->checkpoint(C25~{p1},C25~{p1,p2}))),

Ei(reachable(C25)),

Ei(reachable(!(C25))),

Ai(oscil(C25)),

Ei(reachable(C25~{p1})),

Ei(reachable(!(C25~{p1}))),

Ai(oscil(C25~{p1})),

Ei(reachable(Wee1)),

Ei(reachable(!(Wee1))),

Ai(oscil(Wee1)),

Ei(reachable(Wee1~{p1})),

Ei(reachable(!(Wee1~{p1}))),

Ai(oscil(Wee1~{p1})),



Fig. 4. Graphical view of Qu’s model.



Ai(AG(!(Wee1~{p1})->checkpoint(Wee1,Wee1~{p1}))),

Ei(reachable(CKI)),

Ei(reachable(!(CKI))),

Ai(oscil(CKI)),

Ei(reachable(CKI-CycB-CDK~{p1})),

Ei(reachable(!(CKI-CycB-CDK~{p1}))),

Ai(oscil(CKI-CycB-CDK~{p1})),

Ei(reachable((CKI-CycB-CDK~{p1})~{p2})),

Ei(reachable(!((CKI-CycB-CDK~{p1})~{p2}))),

Ai(oscil((CKI-CycB-CDK~{p1})~{p2})),

Ai(AG(!((CKI-CycB-CDK~{p1})~{p2})

->checkpoint(CKI-CycB-CDK~{p1},CKI-CycB-CDK~{p1})~{p2}))}).


