Stochastic simulations
Application to molecular networks

Didier Gonze

Unité de Chronobiologie Théorique
Service de Chimie Physique - CP 231
Université Libre de Bruxelles
Belgium



Lahav (2004) Science STKE



Overview

* Introduction: theory and simulation methods

- Definitions (intrinsic vs extrinsic noise, robustness,...)
- Deterministic vs stochastic approaches

- Master equation, birth-and-death processes

- Gillespie and Langevin approaches

- Application to simple systems

= Literature overview

- Measuring the noise, intrinsic vs extrinsic noise
- Determining the souces of noise
- Assessing the robustness of biological systems

= Application to circadian clocks

- Molecular bases of circadian clocks
- Robustness of circadian rhythms to noise



Deterministic vs stochastic appraoches
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Deterministic vs stochastic appraoches

A B

Deterministic Stochastic

Concentration
Concentration

Time Time

C D

Deterministic Stochastic

Concentration
Concentration

Time Time

Ordinary differential equations Stochastic differential equations

17,4 dX
E = fproductoin (X) - fconsumptian (X) Z = fproductoin (X) - fconsumption (X) + fnoise

Discrete stochastic simulations

P(production) X P(consumption)




Sources of noise

Intrinsic noise

Noise resulting form the probabilistic character of the
(bio)chemical reactions. It is particularly important when
the number of reacting molecules is low. It is inherent to
the dynamics of any genetic or biochemical systems.

Extrinsic noise

Noise due to the random fluctuations in environmental
parameters (such as cell-to-cell variation in temperature,
pH, kinetics parameters, number of ribosomes,...).

Both Intrinsic and extrinsic noise lead to fluctuations in a single
cell and results in cell-to-cell variability



Noise in biology
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Noise in biology
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Noise in biology

Noise-producing steps in biology
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Effects of noise

Destructive effect of noise
- Imprecision in the timing of genetic events
- Imprecision in biological clocks

- Phenotypic variations

Constructive effect noise
- Noise-induced behaviors
- Stochastic resonance

- Stochastic focusing



Noise-induced phenotypic variations

Stochastic kinetic analysis of a developmental pathway

bifurcation in phage- A Escherichia coli cell
Arkin, Ross, McAdams (1998) Genetics 149: 1633-48
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Imprecision in biological clocks

Circadian clocks limited by noise
Barkai, Leibler (2000) Nature 403: 267-268
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For example, in a previously studied model that depends on a time-delayed negative feedback, reliable
oscillations were found when reaction kinetics were approximated by continuous differential equations.
However, when the discrete nature of reaction events is taken into account, the oscillations persist but
with periods and amplitudes that fluctuate widely in time. Noise resistance should therefore be
considered in any postulated molecular mechanism of circadian rhythms.



Noise-induced behaviors
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Stochastic resonance

Stochastic resonance is the phenomenon whereby the addition of an optimal level of
noise to a weak information-carrying input to certain nonlinear systems can enhance the

information content at their outputs.
THRESHOLD a)

SIGNAL
+ NOISE

\ w’/ P | SPIKE TRAIN = OUTPUT: u()

b)

TIME ¢

Signal-to-noise
Ratio (SNR)
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P Hanggi (2002) Stochastic resonance in biology.
009, bt b Chem Phys Chem 3: 285
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Stochastic resonance

paddle fish
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Here, we show that stochastic resonance
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Noise, robustness and evolution

Robustness is a property that allows a system to
maintain its functions despite external and internal
noise.

It is commonly believed that robust traits have been
selected by evolution.

Kitano (2004) biological robustness. Nat. Rev. Genet. 5: 826-837



Noise, robustness and evolution

Engineering stability in gene networks by autoregulation
Becskei, Serrano (2000) Nature 405: 590-3
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Autoregulation (negative feedback loops) in gene circuits provide stability, thereby
limiting the range over which the concentrations of network components fluctuate.



Noise, robustness and evolution

Design principles of a bacterial signalling network
Kolimann, Lodvok, Bartholomé, Timmer, Sourjik (2005) Nature 438: 504-507
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Among these topologies the experimentally established chemotaxis network of Escherichia coli has the
smallest sufficiently robust network structure, allowing accurate chemotactic response for almost all
individuals within a population.



Theory of stochastic systems



Deterministic formulation

Let's consider a single species (X) involved in a single reaction:

nX+..—pX-+4 ..

Deterministic description of its time evolution (ODE):

dX
dt

n = stoechiometric coefficient
v = reaction rate:

v = kX"

=nv withn=p—n



Deterministic formulation

Let's now consider a several species (X,) involved
in a couple of reactions:

N1 X1 + 021 Xo + ... — P Xy + Py Xg + ..
I112X1 + HQQXQ —+ ... — p12X1 + p22X2 -+ ...

anXI + HQRXQ + A lexl + szXQ —|‘

Deterministic description of their time evolution (ODE):

1X, <&
dt ZU@T‘UT = 1);1V1 + 1Ni2V2 + ... + 1)iRVR

r=1

v, = rate of the different reactions (r = 1,2,...R).

MNir = Pir — Ny = stoechiometric coefficient of compound X; in reaction r.



Stochastic formulation

Stochastic description (in terms of the probabilities):

R
P(X,t+dt) = P(X,t)P(no change over dt) + Z P(X — n,,t)P(state change over dt)
r=1

P(no change over dt) = 1 — S w,(X)dt

P(state change over dt) = w,(X — n,)dt

P(X,t+dt)— P(X,t) _9P(X,1)

P it o1
IP(X,t) &
= 3 (X ) POX ) — i (X)POX0)

Chemical master equation



Comparison of the different formalisms
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Stochastic formulation: birth-and-death

Birth-and-death process (single species):

ky ka
— —

State transitions

Ky K,
1 x x
\/ \}/

d d

Master equation for a birth-and-death process

OP (X, 1)
ot

=k P(X — 1,8) + kg(X + 1)P(X + 1,t) — by P(X, t) — kX P(X, t)



Stochastic formulation: birth-and-death

Birth-and-death process (multiple species):

Ebq Ky
— X, —
Ny ka2
— N,—
Eb3 ka3

— A3—

Master equation for a birth-and-death process

SP({;?}J) =S8 Eer({ X — 100 NP X i, Xi — 10 1, 1)

+kar ({Xi + 70 ) P({ X i, X + 00}, 1) — ko ({ XGH) P(XG 1) — Bar ({ X P({XG ] 1)



Stochastic formulation: examples

w(X,Y) = kXY

OP(X.Y.Z.t)

BT —wX+ 1LY+ 1P X+1LY+1,Z-1)

—w(X,Y)P(X.Y.Z)
= k(X +1)(Y +1D)P(X +1,Y +1,Z—1)
—kXYP(X.Y.Z)




Stochastic formulation: examples

A+X E 9x

w(A, X) = kAX

oP(A, X t)
Al

=wA+1L,X-1)P(A+1,X —1)
—w(A, X)P(A, X)

=k(A+1)(X - 1)P(A+1,X —1)
— kAXP(A, X)



Stochastic formulation: examples

IdP(X,E. t)

at

= w(X +2)P(X +2,E — 1)
- ?.U(X}-{}(X: E)

i
= E(X + 1) (X +2)P(X +2,F—1)

- g(}{ - 1)(X)P(X, F)



Stochastic formulation: Fokker-Planck

Fokker-Planck equation
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Stochastic formulation: remark

This is a nice theory, but...

For N = 200 there are more than 1000000 possible
molecular combinaisons!

We can not solve the master equation by hand.

We need to perform simulations (using computers).




Numerical simulation

The Gillespie algorithm

Direct simulation of the master equation

P(production) _ X P(consumption)

~
>

The Langevin approach

Stochastic differential equation

dX

Z = productoin (X ) - f cccccc ption (X ) + f noise



Gillespie algorithm

The Gillespie algorithm

A reaction rate w; is associated to each reaction y W, s B
step. These probabilites are related to the kinetics
constants. W,
Initial number of molecules of each species are B+C > L)
specified. »
D > S+ F

The time interval is computed stochastically
according the reation rates.

At each time interval, the reaction that occurs is
chosen randomly according to the probabilities w;
and both the number of molecules and the
reaction rates are updated.



Gillespie algorithm

Principle of the Gillespie algorithm A58
W
Probability that reaction r occurs B+C——=>D
P. = Wr DL}E-FF

R
D ic Wi

Reaction r occurs if

N

1 .

Pr—l{:glgpr—l_'_-Pr /
Time step to the next reaction o/ G
C./Cy

1 1
At = In % | >
R y E‘ w, W, Wy

Gillespie D.T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81: 2340-2361.
Gillespie D.T., (1976) A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled
Chemical Reactions. J. Comp. Phys., 22: 403-434.



Gillespie algorithm

In practice...

1. Calculate the transition probability w, which are functions
of the kinetics parameters k. and the variables X, .

2. Generate z, and z, and calculate the reaction that occurs
as well as the time till this reaction occurs.

3. Increase tby At and adjust X to take into account the
occurrence of the reaction that just occured.

fax=1

At

|
|
|
| | |

| | |

1 1 1
reaction 1 reaction 2 reaction 3
(Ax=+1) (Ax=+1) (Ax=-2)



Gillespie algorithm

Remark

A key parameter in this approach is the system size Q. This parameter has the

unit of a volume and is used to convert concentration x into a number of
molecules X:

X=QXx

For a given concentration (defined by the deterministic model), bigger is the
system size (Q2), larger is the number of molecules. Therefore, Q allows us to

control directly the number of molecules present in the system (hence the noise).

Typically, Q appears in the reaction steps involving two (or more) molecular
species because these reactions require the collision between two (or more)

molecules and their rate thus depends on the number of molecules present in the
system.

A+B—C 2A =D
Vv=AB/Q v=A(A-1)/2Q



Gillespie algorithm: improvements & extensions

Next Reaction Method (Gibson & Bruck, 2000)

Gibson & Bruck's algorithm avoids calculation that is repeated in every
iteration of the computation. This adaptation improves the time performance
while maintaining exactness of the algorithm.

Tau-Leap Method (Gillespie, 2001)

Instead of which reaction occurs at which time step, the Tau-Leap algorithm
estimated how many of each reaction occur in a certin time interval. We gain
a substantial computation time, but this method is approximative and its
accuracy depends on the time interval chosen.

Delay Stochastic Simulation (Bratsun et al., 2005)

Bratsun et al. have extended the Gillespie algorithm to account for the delay
in the kinetics. This adaptation can therefore be used to simulate the
stochastic model corresponding to delay differential equations.



Langevin stochastic equation

Langevin stochastic differential equation

= FX) + g(X)E)

If the noise is white (uncorrelated), we have:

< £(t) >=0 mean of the noise

< E()E(t) >= Dot —t') variance of the noise

D measures the strength of the fluctuations



Gillespie vs Langevin modeling

Deterministic approach

)

v H
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Gillespie vs Langevin modeling
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Spatial stochastic modeling
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Spatial stochastic modeling
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Andrews SS, Arkin AP (2006) Simulating cell biology. 16: R523-527.
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Michaelis-Menten

Reactional scheme E 4+ S 5_1 C E E+P
1

r reaction reaction rate
1 E+S2C w =kES/
> CELELS w=k_,C
3 CEELP wy=kC

Stochastic
transition table

Master equation

OP(S,C, E;t)
ot

= — (b1SE + (k_1 + k2)C)(P(S, C; 1))
+ Rk (S+ 1)(E+1)P(S+1,C—1;t)
+ k1 (C+1)P(S—1,C+ 1;t)
+ ko (C + 1)P(S,C + 1;t)



Michaelis-Menten
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Michaelis-Menten

Quasi-steady state assumption

If F << S, dCJ’/dt = quasi-steady state
‘ ErS
C —
k_q + ko
ko +5
Rate of production of P v = E = koC = Vipaa °
dt Kﬂj + S
k_ L
V. = kyEp and Ky = 2oL 02
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Stochastic transition table ; .
r  reaction reaction rate
S

1 S—=P w =V, NS




Gene expression
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Gene expression
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Conformational change

; % 06 L
o «g 0.4
Reactional scheme
A 4— B b o008
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Rao, Wolf, Arkin, (2002) Nature



Bruxellator

Reactional scheme

r reaction rate

1 AL v, = kA

2 B+X2Y4+C v=kBX

3 X 4+Y EB3X g =k X2Y

4 XD vy = ko X
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Bruxellator

Stochastic

b r reaction reaction rate
transition table o
1 A — wy = k‘lA
2 B+XE>Y+C Wy = ks BX /)
32X + Y £ 3X ws = ks X (X — 1)Y/20?
4 X £ D wy = ks X
Master equation
P(X,Y:t)

— (k1A + kyBX + ks XY + by X)P(X,Y: 1)

+ kAP(X —1,Y ;1)

+ ke B(X +1)P(X+1,Y — 1:t)

+ k(X —1D*(Y+1)P(X —1,Y +1;¢)
+E(X +1D)P(X+1,Y;1)

ot



Bruxellator
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Quantification of the noise
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Lotka-Volterra

Predator-prey model
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Fitzhugh-Nagumo

The Fitzhugh-Nagumo model is a example of a two-dimensional excitable
system.It was proposed as a simplication of the famous model by Hodgkin
and Huxley to describe the response of an excitable nerve membrane to
external current stimuli.

) }f—f = flz) -y
d_i’ = vz — By + b — s(t) + V2DE(t)

The two non-dimensional variables x and y are

x = voltage-like variable (activator) - slow variable
y = recovery-like variable (inhibitor) - fast variable

The nonlinear function f(x) (shaped like an inverted N, as shown in figure
2) is one of the nuliclines of the deterministic system; a common choice
for this function is

f(z) =z — az®

D (1) is a white Gaussian noise with intensity D.
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