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  Overview

! Introduction: theory and simulation methods

    - Definitions (intrinsic vs extrinsic noise, robustness,...)

    - Deterministic vs stochastic approaches

    - Master equation, birth-and-death processes

    - Gillespie and Langevin approaches

    - Application to simple systems

! Literature overview

    - Measuring the noise, intrinsic vs extrinsic noise

    - Determining the souces of noise

    - Assessing the robustness of biological systems

! Application to circadian clocks

    - Molecular bases of circadian clocks

    - Robustness of circadian rhythms to noise



  Deterministic vs stochastic appraoches



  Deterministic vs stochastic appraoches

Ordinary differential equations Stochastic differential equations

! 

dX

dt
= f productoin (X) " fconsumption (X)

! 

dX

dt
= f productoin (X) " fconsumption (X) + fnoise

Discrete stochastic simulations

! 

P( production )
" # " " " " X

P(consumption )
" # " " " " 



  Sources of noise

Intrinsic noise

Noise resulting form the probabilistic character of the

(bio)chemical reactions. It is particularly important when

the number of reacting molecules is low. It is inherent to

the dynamics of any genetic or biochemical systems.

Extrinsic noise

Noise due to the random fluctuations in environmental

parameters (such as cell-to-cell variation in temperature,

pH, kinetics parameters, number of ribosomes,...).

Both Intrinsic and extrinsic noise lead to fluctuations in a single

cell and results in cell-to-cell variability



  Noise in biology



  Noise in biology

• Regulation and binding to DNA

• Transcription to mRNA

• Splicing of mRNA

• Transportation of mRNA to cytoplasm

• Translation to protein

• Conformation of the protein

• Post-translational changes of protein

• Protein complexes formation

• Proteins and mRNA degradation

• Transportation of proteins to nucleus

• ...



  Noise in biology

Noise-producing steps in biology

Promoter

state

mRNA

Protein

Kaufmann & van Oudenaarden (2007) Curr. Opin. Gen. Dev. , in press



  Effects of noise

Fedoroff & Fontana (2002) Science

Georges Seurat

Un dimanche après-midi

à la Grande Jatte



  Effects of noise

Destructive effect of noise

- Imprecision in the timing of genetic events

- Imprecision in biological clocks

- Phenotypic variations

Constructive effect noise

- Noise-induced behaviors

- Stochastic resonance

- Stochastic focusing



  Noise-induced phenotypic variations

Stochastic kinetic analysis of a developmental pathway 

bifurcation in phage-! Escherichia coli cell
Arkin, Ross, McAdams (1998) Genetics 149: 1633-48

E. coli

! phage Fluctuations in rates of gene
expression can produce highly

erratic time patterns of protein

production in individual cells and

wide diversity in instantaneous

protein concentrations across cell

populations.

When two independently produced

regulatory proteins acting at low

cellular concentrations

competitively control a switch
point in a pathway, stochastic

variations in their concentrations

can produce probabilistic
pathway selection, so that an

initially homogeneous cell

population partitions into distinct
phenotypic subpopulations



  Imprecision in biological clocks

Circadian clocks limited by noise
Barkai, Leibler (2000) Nature 403: 267-268

For example, in a previously studied model that depends on a time-delayed negative feedback, reliable

oscillations were found when reaction kinetics were approximated by continuous differential equations.

However, when the discrete nature of reaction events is taken into account, the oscillations persist but

with periods and amplitudes that fluctuate widely in time. Noise resistance should therefore be

considered in any postulated molecular mechanism of circadian rhythms.



  Noise-induced behaviors

Noise-induced oscillations

Noise-induced synchronization

Noise-induced excitability

Noise-induced bistability

Noise-induced pattern formation

Noise-induced oscillations in
an excitable system

Vilar et al, PNAS, 2002



  Stochastic resonance

Hanggi (2002) Stochastic resonance in biology.
Chem Phys Chem 3: 285

Stochastic resonance is the phenomenon whereby the addition of an optimal level of
noise to a weak information-carrying input to certain nonlinear systems can enhance the
information content at their outputs.

noise

Signal-to-noise 

Ratio (SNR)



  Stochastic resonance

paddle fish Here, we show that stochastic resonance
enhances the normal feeding behaviour of paddle

fish (Polyodon spathula) which use passive
electroreceptors to detect electrical signals from
planktonic prey (Daphnia).



  Noise, robustness and evolution

Robustness is a property that allows a system to

maintain its functions despite external and internal

noise.

It is commonly believed that robust traits have been

selected by evolution.

Kitano (2004) biological robustness. Nat. Rev. Genet. 5: 826-837



Engineering stability in gene networks by autoregulation
Becskei, Serrano (2000) Nature 405: 590-3

Autoregulation (negative feedback loops) in gene circuits provide stability, thereby

limiting the range over which the concentrations of network components fluctuate.

  Noise, robustness and evolution



Design principles of a bacterial signalling network
Kollmann, Lodvok, Bartholomé, Timmer, Sourjik (2005) Nature 438: 504-507

Among these topologies the experimentally established chemotaxis network of Escherichia coli has the

smallest sufficiently robust network structure, allowing accurate chemotactic response for almost all

individuals within a population.

  Noise, robustness and evolution



Theory of stochastic systems



  Deterministic formulation

Let's consider a single species (X) involved in a single reaction:

" = stoechiometric coefficient

v = reaction rate:

Deterministic description of its time evolution (ODE):



  Deterministic formulation

Let's now consider a several species (Xi) involved 

in a couple of reactions:

Deterministic description of their time evolution (ODE):



  Stochastic formulation

Stochastic description (in terms of the probabilities):

Chemical master equation



  Comparison of the different formalisms

Deterministic description

Stochastic description

(1 possible realization)

Stochastic description

(10 possible realizations)

Stochastic description

(probability distribution)



  Stochastic formulation: birth-and-death

Birth-and-death process (single species):

Master equation for a birth-and-death process

State transitions



  Stochastic formulation: birth-and-death

Birth-and-death process (multiple species):

Master equation for a birth-and-death process



  Stochastic formulation: examples



  Stochastic formulation: examples



  Stochastic formulation: examples



  Stochastic formulation: Fokker-Planck

Fokker-Planck equation

Drift term Diffusion term



  Stochastic formulation: remark

For N = 200 there are more than 1000000 possible

molecular combinaisons!

We can not solve the master equation by hand.

We need to perform simulations (using computers).

This is a nice theory, but...



  Numerical simulation

The Gillespie algorithm

Direct simulation of the master equation

The Langevin approach

Stochastic differential equation

! 

dX

dt
= f productoin (X) " fconsumption (X) + fnoise

! 

P( production )
" # " " " " X

P(consumption )
" # " " " " 



  Gillespie algorithm

The Gillespie algorithm

A reaction rate wi is associated to each reaction
step. These probabilites are related to the kinetics
constants.

Initial number of molecules of each species are
specified.

The time interval is computed stochastically
according the reation rates.

At each time interval, the reaction that occurs is
chosen randomly according to the probabilities wi

and both the number of molecules and the
reaction rates are updated.



  Gillespie algorithm

Principle of the Gillespie algorithm

Gillespie D.T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81: 2340-2361.

Gillespie D.T., (1976) A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled

Chemical Reactions. J. Comp. Phys., 22: 403-434.

Probability that reaction r occurs

Reaction r occurs if

Time step to the next reaction



  Gillespie algorithm

In practice...

1. Calculate the transition probability wi which are functions
of the kinetics parameters kr and the variables Xi .

2. Generate z1 and z2 and calculate the reaction that occurs
as well as the time till this reaction occurs.

3. Increase t by #t and adjust X to take into account the

occurrence of the reaction that just occured.



  Gillespie algorithm

Remark

A key parameter in this approach is the system size $. This parameter has the

unit of a volume and is used to convert concentration x into a number of
molecules X:

X = $ x

For a given concentration (defined by the deterministic model), bigger is the
system size ($), larger is the number of molecules. Therefore, $ allows us to

control directly the number of molecules present in the system (hence the noise).

Typically, $ appears in the reaction steps involving two (or more) molecular

species because these reactions require the collision between two (or more)
molecules and their rate thus depends on the number of molecules present in the
system.

A + B % C       2A % D

           v = A B / $                 v = A (A-1) / 2 $



  Gillespie algorithm: improvements & extensions

Next Reaction Method (Gibson & Bruck, 2000)

Tau-Leap Method (Gillespie, 2001)

Delay Stochastic Simulation (Bratsun et al., 2005)

Gibson & Bruck's algorithm avoids calculation that is repeated in every

iteration of the computation. This adaptation improves the time performance

while maintaining exactness of the algorithm.

Instead of which reaction occurs at which time step, the Tau-Leap algorithm

estimated how many of each reaction occur in a certin time interval. We gain

a substantial computation time, but this method is approximative and its

accuracy depends on the time interval chosen.

Bratsun et al. have extended the Gillespie algorithm to account for the delay

in the kinetics. This adaptation can therefore be used to simulate the

stochastic model corresponding to delay differential equations.



  Langevin stochastic equation

Langevin stochastic differential equation

If the noise is white (uncorrelated), we have:

mean of the noise

variance of the noise

D measures the strength of the fluctuations



  Gillespie vs Langevin modeling



  Gillespie vs Langevin modeling

LangevinGillespie

$ " D #



  Spatial stochastic modeling



  Spatial stochastic modeling

Andrews SS, Arkin AP (2006) Simulating cell biology. 16: R523-527.



  Michaelis-Menten

Reactional scheme

Deterministic

evolution equations



  Michaelis-Menten

Stochastic

transition table

Reactional scheme

Master equation



  Michaelis-Menten



  Michaelis-Menten

Quasi-steady state assumption

If quasi-steady state 

Rate of production of P

Stochastic transition table



  Gene expression

Reactional scheme

Thattai - van Oudenaarden model



  Gene expression

mRNA

Poisson

distribution
(computed from

the simulation

results)

Protein

non Poisson

distribution
(computed from

the simulation

results)

Theoretical 

Poisson

distribution

Theoretical

Poisson

distribution



  Conformational change

Rao, Wolf, Arkin, (2002) Nature

Reactional scheme

A          B

As the number of molecules increases, the steady-

state probability density function becomes sharper.

The distribution is given by



  Bruxellator

Reactional scheme

Deterministic

evolution equations



  Bruxellator

Stochastic

transition table

Master equation



  Bruxellator



  Quantification of the noise

! Histogram of periods

! Auto-correlation function

standard deviation 

of the period

half-life of the 

auto-correlation



  Bruxellator



  Bruxellator

Gaspard P (2002) The correlation time of mesoscopic chemical clocks. J.
Chem. Phys.117: 8905-8916.

linear relationship



  Lotka-Volterra

Predator-prey model

prey

predator

Deterministic

equations



  Lotka-Volterra



The two non-dimensional variables x and y are

     x = voltage-like variable (activator) - slow variable

     y = recovery-like variable (inhibitor) - fast variable

The nonlinear function f(x) (shaped like an inverted N, as shown in figure

2) is one of the nullclines of the deterministic system; a common choice
for this function is

D (t) is a white Gaussian noise with intensity D.

  Fitzhugh-Nagumo

The Fitzhugh-Nagumo model is a example of a two-dimensional excitable

system.It was proposed as a simplication of the famous model by Hodgkin
and Huxley to describe the response of an excitable nerve membrane to

external current stimuli.



  Fitzhugh-Nagumo

Deterministic Stochastic

excitability oscillations


