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  Noise in genetic networks

Origins

    How to measure and distinguish between the two types of noise
(intrinsic vs extrinsic)?

    What are the molecular processes that produce the most of noise?

Consequences

    How is the noise propagated in gene networks?

    How does the noise affect cellular behavior?

Control

    What are the cellular mechanisms that confer robustness to noise?



Origin of noise in genetic networks

Stochasticity gene expression in a single cell
Elowitz, Levine, Siggia, Swain (2002) Science 297: 1183-86

Regulation of noise in the expression of a single gene
Ozdudak, Thattai, Kurtser, Grossman, van Oudenaarden (2002) Nat Genet 31: 69-73

Control of stochasticity in eukaryotic gene expression
Raser, O'Shea (2004) Science 304: 1811-14

Noise in eukaryotic gene expression
Blake, Kaern, Cantor, Collins (2003) Nature 422: 633-637

Gene regulation at the single-cell level
Rosenfeld, Young, Alon, Swain, Elowitz (2005) Science 307: 1962-1965



Stochasticity gene expression in a single cell
Elowitz, Levine, Siggia, Swain (2002) Science 297: 1183-86

Double reporter construction Experiment in E. coli

no intrinsic noise, only extrinsic noise

both intrinsic and extrinsic noise



Stochasticity gene expression in a single cell
Elowitz, Levine, Siggia, Swain (2002) Science 297: 1183-86

M22

D22

M22 = quite strain (wild type)
D22 = noisy strain (deletion of recA gene)

fully induced
(no LacI repressor)

Expression level controled by IPTG

Conrol of gene expression



Stochasticity gene expression in a single cell
Elowitz, Levine, Siggia, Swain (2002) Science 297: 1183-86

Conclusions

• Using a two-reporter method, it is possible to measure
and distinguished between extrinsic and intrinsic noise.

• The stochastic nature of gene expression gives rise to
noise in protein levels.

• The relative contributions of extrinsic and intrinsic
component to the total noise vary with expression level.

• An increase of noise may arise from transient copy
number differences between parts of the chromosomes

For the theory see: Swain, Elowitz, Siggia (2002) Intrinsic and extrinsic
contributions to stochasicity in gene expression. PNAS 99: 12795-801



Regulation of noise in the expression of a single gene
Ozbudak, Thattai, Kurtser, Grossman, van Oudenaarden (2002) Nat Genet 31: 69-73

Experiment in bacilius subtilisMethodology

Translational and transcriptional mutants



Regulation of noise in the expression of a single gene
Ozbudak, Thattai, Kurtser, Grossman, van Oudenaarden (2002) Nat Genet 31: 69-73

Various translational mutants Various transcriptional mutants



Regulation of noise in the expression of a single gene
Ozbudak, Thattai, Kurtser, Grossman, van Oudenaarden (2002) Nat Genet 31: 69-73

Theoretical model

mRNA

protein

average number of proteins 
synthesized per mRNA transcript

mean level of protein and standard
deviation (noise)



Regulation of noise in the expression of a single gene
Ozbudak, Thattai, Kurtser, Grossman, van Oudenaarden (2002) Nat Genet 31: 69-73

Conclusions

• Translation is the dominant source of noise in protein
levels.

• This result is consistent with the prediction of a simple
theoretical model of stochastic gene expression.

For the theory see: Thattai, van Oudenaarden (2002) Intrinsic noise in gene
regulatory networks. PNAS 98: 8614-8610



Control of stochasticity in eukaryotic gene expression
Raser, O'Shea (2004) Science 304: 1811-14

Double reporter construction Experiment in S. cerevisiae



Control of stochasticity in eukaryotic gene expression
Raser, O'Shea (2004) Science 304: 1811-14

ADH1
Experiment with different promoters:

total (≈ extrinsic) noise

PHO84

PHO84
GAL1



Control of stochasticity in eukaryotic gene expression
Raser, O'Shea (2004) Science 304: 1811-14

GAL1

PHO84

PHO5

Experiment with different promoters:
intrinsic noise

PHO84 promoter
PHO5 promoter

controled by the
same activator
(Pho4p)

GAL1 promoter

PHO84 promoter
PHO5 promoter

low intrinsic noiseGAL1 promoter

controled by Gal4p

larger intrinsic noise

Observation



Control of stochasticity in eukaryotic gene expression
Raser, O'Shea (2004) Science 304: 1811-14

Theoretical model

Comparison of various
models of gene activation

The noise strength profile of
PHO5 is similar to the
prediction made for case I (see
panel D) when the promoter
activation rate is changed (see
green curve).

Prediction:

The noise generation in PHO5
is dependent on the rate of a
slow upstream promoter
transition



Control of stochasticity in eukaryotic gene expression
Raser, O'Shea (2004) Science 304: 1811-14

mutations in UAS mutations in snf6, arp8,...

complexes involved in chromatin remodeling

mutations in TATA box

transcription efficiency



Conclusions

• The two-reporter technique can be applied to eukaryotes
(yeast).

• Extrinsic noise is predominant over intrinsic noise

• Total noise (≈ extrinsic) is not gene-specific, but intrinsic
noise is gene-specific.

• Noise does not depend on the regulatory pathway,
neither on absolute rate of expression.

• Noise depends on the rate of a slow upstream promoter
transition, such as chromatine remodeling

Control of stochasticity in eukaryotic gene expression
Raser, O'Shea (2004) Science 304: 1811-14



Noise in eukaryotic gene expression
Blake, Kaern, Cantor, Collins (2003) Nature 422: 633-637

Experiment in S. cerevisiae

induction 
by 0.2% gal

induction
by 40 ng /ml ATc

fluorescence

Genetic construction with two
transcriptional controls:
  GAL (direct activator)
and
  ATc (inhibitor of the TetR inhibitor)

Inductions by GAL or ATc induce
differential responses.

The mode of transcriptional
control has thus a significant
influence on the response to the
noise.



Noise in eukaryotic gene expression
Blake, Kaern, Cantor, Collins (2003) Nature 422: 633-637

Experiment: effect of transcriptional and
translational efficiency on the noise

Model

Controled by 
ATc or GAL

Controled by 
mutation in codons

(by keeping the same 
aa sequence)

full transcription

28% transcription

The level of noise in eukaryotic gene expression is
strongly influenced by transcription



Noise in eukaryotic gene expression
Blake, Kaern, Cantor, Collins (2003) Nature 422: 633-637

Experiment: cascading
noise in a gene network

fluorescence

low level of noise high level of noise
Downstream effects of noise
can have profound
phenotypic consequences,
drastically affecting the
stability of gene expression



Noise in eukaryotic gene expression
Blake, Kaern, Cantor, Collins (2003) Nature 422: 633-637

Conclusions

• In eukaryots, the mode of transcriptional control can
have a marked effect on the response to the noise.

• In eukaryots, noise arising from transcription contributes
more than noise generated at the translational level (in
contrast to observation in prokaryots).

• Downstream effects of noise can have profound
phenotypic consequences, drastically affecting the
stability of gene expression.



Consequence of noise in genetic networks

Stochastic kinetic analysis of a developmental pathway bifurcation in phage-λ E. coli cell
Arkin, Ross, McAdams (1998) Genetics 149: 1633-48

Multistability in the lactose utilization network of E. coli
Ozbudak, Thaittai, Lim, Shraiman, van Oudenaarden (2004) Nature 427: 737-740

Noise propagation in gene networks
Pedraza, van Oudenaarden (2005) Science 307: 1965-69

Ultrasensitivity and noise propagation in a synthetic transcriptional cascade
Hooshangi, Thilberge, Weiss (2005) PNAS 102: 3581-3586



Stochastic kinetic analysis of a developmental pathway
bifurcation in phage-λ Escherichia coli cell
Arkin, Ross, McAdams (1998) Genetics 149: 1633-48



Stochastic kinetic analysis of a developmental pathway
bifurcation in phage-λ Escherichia coli cell
Arkin, Ross, McAdams (1998) Genetics 149: 1633-48

Switch CRO / CII

high CRO, low CI → lysis
low CRO, high CI → lysogeny



Stochastic kinetic analysis of a developmental pathway
bifurcation in phage-λ Escherichia coli cell
Arkin, Ross, McAdams (1998) Genetics 149: 1633-48

Very detailed molecular model
for the phage-λ genetic switch



Stochastic kinetic analysis of a developmental pathway
bifurcation in phage-λ Escherichia coli cell
Arkin, Ross, McAdams (1998) Genetics 149: 1633-48

The random developmental
path choice between the
lysogenic or lytic path in
individual cells results from
the inevitable fluctuations in
the temporal pattern of
protein concentration
growth caused by the
molecular-level thermal
fluctuations in rates of rate-
determining reactions within
gene expression
mechanisms.

The resulting differences in concentration between the
regulatory proteins controlling the bistable switching
elements of the decision circuit led to different path
selections in different cells.



Stochastic kinetic analysis of a developmental pathway
bifurcation in phage-λ Escherichia coli cell
Arkin, Ross, McAdams (1998) Genetics 149: 1633-48

Conclusions

• Stochastic variations at the genetic level can produce
probabilistic pathway selection, thereby leading to
distinct phenotypic subpopulations.



Multistability in the lactose utilization network of E. coli
Ozbudak, Thaittai, Lim, Shraiman, van Oudenaarden (2004) Nature 427: 737-740

Lactose utilization network in E. coli

TMG = inducer
         = control parameter
            (inhibits LacI inhibitor)

GFP = green fluorescent reporter,
           controled by Plac promoter



Multistability in the lactose utilization network of E. coli
Ozbudak, Thaittai, Lim, Shraiman, van Oudenaarden (2004) Nature 427: 737-740

Bistability and hysteresis effect in single cells

starting from induced cells

starting from uninduced cells

Some cell are fully
induced (green) or fully

uninduced (white)
(bistability)

18 µM TMG

Induction by TMG



Multistability in the lactose utilization network of E. coli
Ozbudak, Thaittai, Lim, Shraiman, van Oudenaarden (2004) Nature 427: 737-740

(a) wild type
(b) lacI binding site inserted in 4 plasmids
(c) lacI binding site inserted in 25 plasmids

hysteretic
response

gradual
response

theoretical
phase

diagram

parameters values are
estimated experimentally

Experiment: switch from a low (uninduced) or high
(induced) TMG medium to an intermediary TMG
medium (bistability)



Multistability in the lactose utilization network of E. coli
Ozbudak, Thaittai, Lim, Shraiman, van Oudenaarden (2004) Nature 427: 737-740

Conclusions

• Hysteretic vs graded responses can be achieved by
modulating the parameters of the model, as predicted by a
simple model.

• In the condition of hysteretic response, a bimodal
distribution is observed because not all the cells switch
from one steady state to the other. This is a consequence
of stochastic effects.



Ultrasensitivity and noise propagation in a synthetic
transcriptional cascade
Hooshangi, Thilberge, Weiss (2005) PNAS 102: 3581-3586

Experiment in E. coli: 

construction of 3 synthetic transcriptional cascades:

aTc = inducer = control parameter, prevent the repression by tetR



Ultrasensitivity and noise propagation in a synthetic
transcriptional cascade
Hooshangi, Thilberge, Weiss (2005) PNAS 102: 3581-3586

Experiment ModelExperiment

(circuit 1) (circuit 2) (circuit 3)

(2)

(1)

(3)

(1)

(2)

(3)

The noise is more marked during the transition, especially in circuit (3).
Longer cascade amplify cell-to-cell variability in the intermediate regions.



Ultrasensitivity and noise propagation in a synthetic
transcriptional cascade
Hooshangi, Thilberge, Weiss (2005) PNAS 102: 3581-3586

What is the role of long cascades?

Delay in the response

(1)

(2)

(3)

(1)
(2)

(3)

aTc added

aTc removed

Low-pass filter

5 min

45 min

(1)

(2)

(3)

(1) (2)

(3)

short-pulse perturbation

long-pulse perturbation



Ultrasensitivity and noise propagation in a synthetic
transcriptional cascade
Hooshangi, Thilberge, Weiss (2005) PNAS 102: 3581-3586

Conclusions

• Noise (and consequently cell-to-cell variability) is amplified
at transition in long cascades.

• Synchronization of cell responses is diminished for longer
cascade

• Long cascade can induce delay in the response

• Long cascade act as low pass-filter

⇒  Trade-off between robustness to noise and function



Control of noise in genetic networks

Control of stochasticity in eukaryotic gene expression
Raser, O'Shea (2004) Science 304: 1811-14

Engineering stability in gene networks by autoregulation
Becskei, Serrano (2000) Nature 405: 590-3

Design principles of a bacterial signalling network
Kollmann, Lodvok, Bartholomé, Timmer, Sourjik (2005) Nature 438: 504-507



Control of stochasticity in eukaryotic gene expression
Raser, O'Shea (2004) Science 304: 1811-14

Noise can be controled
by kinetics parameters



Control of stochasticity in eukaryotic gene expression
Raser, O'Shea (2004) Science 304: 1811-14

Conclusions

• Noise can be controled by kinetics parameters



Engineering stability in gene networks by autoregulation
Becskei, Serrano (2000) Nature 405: 590-3

Model and simulation



Engineering stability in gene networks by autoregulation
Becskei, Serrano (2000) Nature 405: 590-3

Experiment in E. coli

Noise can be controled
by auto-regulation



Engineering stability in gene networks by autoregulation
Becskei, Serrano (2000) Nature 405: 590-3

Conclusions

• Autoregulation in gene circuits (in particular negative
feedback loops) provides stability.



Design principles of a bacterial signalling network
Kollmann, Lodvok, Bartholomé, Timmer, Sourjik (2005) Nature 438: 504-507

Noise can be controled
by topology of the
regulatory network



Design principles of a bacterial signalling network
Kollmann, Lodvok, Bartholomé, Timmer, Sourjik (2005) Nature 438: 504-507

Conclusions

• Noise can be controled by topology of the regulatory
network



...much work must be done to 
understand how cellular processes 
behave robustly in the presence of 
underlying stochasticity. Such work 

often requires a non-traditional 
collaboration between mathematicians,
physicists, and in vivo experimentalists


