Stochastic simulations

Application to circadian clocks

Didier Gonze

Circadian rhythms

Circadian rhythms allow living organisms to live in phase with the alternance of day and night...

Circadian rhythms in Drosophila

A. normal

24 h	ours
. arrhythmic m	utant
short-period	mutant
10 hours	
long - period	mutant
iong period	
the second	

Locomotor activity

Expression of per gene

Zeitgeher time

Molecular mechanism of circadian clocks

Core mechanism: negative feedback loop

	clock gene
Drosophila	per (period), tim (timeless)
Mammals	mper1-3 (period homologs)
Neurospora	frq (frequency)

Deterministic models for circadian rhythms

Goldbeter A (1995) A model for circadian oscillations in the *Drosophila* period protein (PER). *Proc. R. Soc. Lond. B. Biol. Sci.* 261, 319-24.

 $\frac{dM_P}{dt} = v_s \frac{K_I^n}{K_I^n + P_N^n} - v_m \frac{M_P}{K_m + M_P}$ per mRNA PER protein $\frac{dP_0}{dt} = k_s M_P - v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1}$ (unphosph.) $\frac{dP_1}{dt} = v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} - v_3 \frac{P_1}{K_2 + P_1} + v_4 \frac{P_2}{K_4 + P_2}$ PER protein (monophosph.) $\frac{dP_2}{dt} = v_3 \frac{P_1}{K_2 + P_1} - v_4 \frac{P_2}{K_4 + P_2} - v_d \frac{P_2}{K_4 + P_2} - k_1 P_2 + k_2 P_N$ PER protein (biphosph.) $\frac{dP_N}{dt} = k_1 P_2 - k_2 P_N$ nuclear PER protein

Goldbeter A (1995) A model for circadian oscillations in the *Drosophila* period protein (PER). *Proc. R. Soc. Lond. B. Biol. Sci.* 261, 319-24.

Dynamics of *per* mRNA (*M_P*): synthesis

Dynamics of *per* mRNA (M_P): degradation

$$\frac{dP_0}{dt} = k_s M_P - v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1}$$
PER synthesis:
proportional to mRNA
$$\frac{dP_1}{dt} = v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} - v_3 \frac{P_1}{K_3 + P_1} + v_4 \frac{P_2}{K_4 + P_2}$$

$$\frac{dP_2}{dt} = v_3 \frac{P_1}{K_3 + P_1} - v_4 \frac{P_2}{K_4 + P_2} - v_d \frac{P_2}{K_d + P_2} - k_1 P_2 + k_2 P_N$$

$$\frac{dP_N}{dt} = k_1 P_2 - k_2 P_N$$

$$\frac{dP_0}{dt} = k_s M_P - \left[v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1} \right]$$
PER phosphorylation/dephosphorylation:
Michaelis-Menten
$$\frac{dP_1}{dt} = \left[v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} \right] - \left[v_3 \frac{P_1}{K_3 + P_1} + v_4 \frac{P_2}{K_4 + P_2} \right]$$
PER phosphorylation/dephosphorylation:
Michaelis-Menten
$$\frac{dP_2}{dt} = \left[v_3 \frac{P_1}{K_3 + P_1} - v_4 \frac{P_2}{K_4 + P_2} \right] - \left[v_3 \frac{P_2}{K_4 + P_2} - k_1 P_2 + k_2 P_N \right]$$

$$\frac{dP_N}{dt} = k_1 P_2 - k_2 P_N$$

$$\frac{dP_0}{dt} = k_s M_P - v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1}$$

$$\frac{dP_1}{dt} = v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} - v_3 \frac{P_1}{K_3 + P_1} + v_4 \frac{P_2}{K_4 + P_2}$$

$$\frac{dP_2}{dt} = v_3 \frac{P_1}{K_3 + P_1} - v_4 \frac{P_2}{K_4 + P_2} - v_d \frac{P_2}{K_d + P_2} - k_1 P_2 + k_2 P_N$$
PER degradation:
Michaelis-Menten
$$\frac{dP_N}{dt} = k_1 P_2 - k_2 P_N$$

$$\frac{dP_0}{dt} = k_s M_P - v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1}$$

$$\frac{dP_1}{dt} = v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} - v_3 \frac{P_1}{K_3 + P_1} + v_4 \frac{P_2}{K_4 + P_2}$$

$$\frac{dP_2}{dt} = v_3 \frac{P_1}{K_3 + P_1} - v_4 \frac{P_2}{K_4 + P_2} - v_d \frac{P_2}{K_d + P_2} - \frac{k_1 P_2 + k_2 P_N}{k_1 P_2 + k_2 P_N}$$

PER nuclear transport: linear

$$\frac{dP_N}{dt} = k_1 P_2 - k_2 P_N$$

Limit-cycle oscillations

- Mutants (long-period, short-period, arrythmic)
- Entrainment by light-dark cycles
- Phase shift induced by light pulses
- Suppression of oscillations by a light pulse
- Temperature compensation
- ...

Molecular mechanism of circadian clocks

	Clock gene	Activator	Effect of light
Drosophila	per, tim	clk, cyc	TIM degradation
Mammals	mper1-3, cry1,2	clock, bmal1	<i>per</i> transcription
Neurospora	frq	wc-1, wc-2	<i>frq</i> transcription

Dunlap JC (1999) Molecular bases for circadian clocks. *Cell* **96**: 271-290. **Young MW & Kay SA** (2001) Time zones: a comparative genetics of circadian clocks. *Nat. Genet.* **2**: 702-715.

Molecular mechanism of circadian clocks

Example: circadian clock in mammals

Figure from Gachon, Nagoshi, Brown, Ripperger, Schibler (2004) The mammalian circadian timing system: from gene expression to physiology. *Chromosomia* **113**: 103-112.

Model for the mammalian circadian clock

16-variable model including *per, cry, bmal1, rev-erb*α

Leloup J-C & Goldbeter A (2003) Toward a detailed computational model for the mammalian circadian clock. *Proc Natl Acad Sci USA*. 100: 7051-7056.

Stochastic models for circadian rhythms

Circadian clocks limited by noise ?

Circadian clocks limited by noise

N. Barkai & S. Leibler, Nature (2000) 403: 267-268

Goldbeter A (1995) A model for circadian oscillations in the *Drosophila* period protein (PER). *Proc. R. Soc. Lond. B. Biol. Sci.* 261, 319-24.

$$\frac{dM_P}{dt} = v_s \frac{K_I^n}{K_I^n + P_N^n} - v_m \frac{M_P}{K_m + M_P}$$

$$\frac{dP_0}{dt} = k_s M_P - v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1}$$

$$\frac{dP_1}{dt} = v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} - v_3 \frac{P_1}{K_3 + P_1} + v_4 \frac{P_2}{K_4 + P_2}$$

$$\frac{dP_2}{dt} = v_3 \frac{P_1}{K_3 + P_1} - v_4 \frac{P_2}{K_4 + P_2} - v_d \frac{P_2}{K_d + P_2} - k_1 P_2 + k_2 P_N$$

$$\frac{dP_N}{dt} = k_1 P_2 - k_2 P_N$$

Fluctuations are due the limited number of molecules (molecular noise). They can be assessed thanks to stochastic simulations.

Such an approach requires a description in term of the number of molecules (instead of concentrations).

Here, we will focus on several robustness factors:

- Number of molecules
- Degree of cooperativity
- Periodic forcing (LD cycle)
- Proximity of a bifurcation point
- Coupling between cells

Detailed reaction scheme

$G + P_N \rightleftharpoons GP_N$	Successive binding of 4 P _N molecules to the gene G
$GP_N + P_N \rightleftharpoons GP_{N2}$	
$GP_{N2} + P_N \rightleftharpoons GP_{N3}$	
$GP_{N3} + P_N \rightleftharpoons GP_{N4}$	
$[G, GP_{N1}, GP_{N2}, GP_{N3}] \rightarrow M + [G, GP_{N1}, GP_{N2}, GP_{N3}]$	Transcription
$M + E_m \rightleftharpoons C_m \to E_m$	Degradation of mRNA
$M \rightarrow M + P_0$	Translation
$P_0 + E_1 \rightleftharpoons C_1 \to P_1 + E_1$	Two reversible phosphorylation
$P_1 + E_2 \rightleftharpoons C_2 \to P_0 + E_2$	
$P_1 + E_3 \rightleftharpoons C_3 \to P_2 + E_3$	
$P_2 + E_4 \rightleftharpoons C_4 \to P_1 + E_4$	
$P_2 + E_d \rightleftharpoons C_d \to E_d$	Degradation of protein
$P_2 \rightleftharpoons P_n$	Translocation of protein

Gillespie algorithm

A **reaction rate** w_i is associated to each reaction step. These probabilites are related to the kinetics constants.

Initial number of molecules of each species are specified.

The **time interval** is computed stochastically according the reation rates.

At each time interval, the **reaction** that occurs is chosen randomly according to the probabilities w_i and both the number of molecules and the reaction rates are updated.

. . .

Gillespie D.T. (1977) Exact stochastic simulation of coupled chemical reactions. *J. Phys. Chem.* 81: 2340-2361. **Gillespie D.T.**, (1976) A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. *J. Comp. Phys.*, 22: 403-434.

Stochastic description of the model

Reaction number	Reaction step	Probability of reaction
1	$G + P_N \xrightarrow{u_1} GP_N$	$w_1 = a_1 \times G \times P_N / \Omega$
2	$GP_N \xrightarrow{d_1} G + P_N$	$w_2 = d_1 \times GP_N$
3	$GP_N + P_N \xrightarrow{u_2} GP_{N2}$	$w_3 = a_2 \times GP_N \times P_N / \Omega$
4	$GP_{N2} \xrightarrow{d_2} GP_N + P_N$	$w_4 = d_2 \times GP_{N2}$
5	$GP_{N2} + P_N \xrightarrow{u_3} GP_{N3}$	$w_5 = a_3 \times GP_{N_2} \times P_N / \Omega$
6	$GP_{N3} \xrightarrow{d_3} GP_{N2} + P_{N3}$	$w_6 = d_3 \times GP_{N3}$
7	$GP_{N3} + P_N \xrightarrow{u_4} GP_{N4}$	$w_7 = a_4 \times GP_{N3} \times P_N / \Omega$
8	$GP_{N4} \xrightarrow{d_4} GP_{N3} + P_N$	$w_8 = d_4 \times GP_{N4}$
9	$[G,GP_N,GP_{N2},GP_{N3}] \xrightarrow{\nu_s} M_P$	$w_9 = v_s \times (G + GP_N + GP_{N2} + GP_{N3})$
10	$M_{P} + E_{m} \xrightarrow{k_{m}} C_{m}$	$w_{10} = k_{m1} \times M_p \times E_m / \Omega$
11	$C_{m} \xrightarrow{k_{m2}} M_{P} + E_{m}$	$w_{11} = k_{m2} \times C_m$
12	$C_{m} \xrightarrow{k_{m3}} E_{m}$	$w_{12} = k_{m3} \times C_m$
13	$M_{P} \xrightarrow{k_{s}} M_{P} + P_{0}$	$w_{13} = k_s \times M_p$
14	$P_0 + E_1 \xrightarrow{k_{11}} C_1$	$w_{14} = k_{11} \times P_0 \times E_1 / \Omega$
15	$C_1 \xrightarrow{k_{12}} P_0 + E_1$	$w_{15} = k_{12} \times C_1$
16	$C_1 \xrightarrow{k_{13}} P_1 + E_1$	$w_{16} = k_{13} \times C_1$
17	$P_1 + E_2 \xrightarrow{k_{21}} C_2$	$w_{17} = k_{21} \times P_1 \times E_2 / \Omega$
18	$C_2 \xrightarrow{k_{22}} P_1 + E_2$	$w_{18} = k_{22} \times C_2$
19	$C_2 \xrightarrow{k_{23}} P_0 + E_2$	$w_{19} = k_{23} \times C_2$
20	$P_1 + E_3 \xrightarrow{k_{31}} C_3$	$w_{20} = k_{31} \times P_1 \times E_3 / \Omega$
21	$C_3 \xrightarrow{k_{32}} P_1 + E_3$	$w_{21} = k_{32} \times C_3$
22	$C_3 \xrightarrow{k_{33}} P_2 + E_3$	$w_{22} = k_{33} \times C_3$
23	$P_2 + E_4 \xrightarrow{k_{41}} C_4$	$w_{23} = k_{41} \times P_2 \times E_4 / \Omega$
24	$C_4 \xrightarrow{k_{42}} P_2 + E_4$	$w_{24} = k_{42} \times C_4$
25	$C_4 \xrightarrow{k_{43}} P_1 + E_4$	$w_{25} = k_{43} \times C_4$
26	$P_2 + E_d \xrightarrow{k_{d_1}} C_d$	$w_{26} = k_{d1} \times P_2 \times E_d / \Omega$
27	$C_d \xrightarrow{k_{d2}} P_2 + E_d$	$w_{27} = k_{d2} \times C_d$
28	$C_d \xrightarrow{k_{d3}} E_d$	$w_{28} = k_{d3} \times C_d$
29	$P_2 \xrightarrow{k_1} P_N$	$w_{29} = k_1 \times P_2$
30	$P_{N} \xrightarrow{k_{2}} P_{2}$	$w_{30} = k_2 \times P_N$

Stochastic oscillations and limit cycle

Gonze D, Halloy J, Goldbeter A (2002) Robustness of circadian rhythms with respect to molecular noise. *Proc. Natl. Acad. Sci. USA* 99: 673-678.

Effect of the number of molecules, Ω

Effect of the degree of cooperativity, n

Gonze D, Halloy J, Goldbeter A (2002) Robustness of circadian rhythms with respect to molecular noise. *Proc. Natl. Acad. Sci. USA* 99: 673-678.

Quantification of the effect of noise

Degree of cooperativity

Effect of a periodic forcing (LD cycle)

Light-dark cycle LD 12:12

light induces **PER protein** degradation, v_d

μ=24.1

σ=2.8

40

50

24

Cooperative protein-DNA binding

We define γ :

$$a_i \rightarrow a_i / \gamma$$
 $(i = 1,...4)$
 $d_i \rightarrow d_i / \gamma$ $(i = 1,...4)$

Influence of the protein-DNA binding rate

Gonze D, Halloy J, Goldbeter A (2004) Emergence of coherent oscillations in stochastic models for circadian rhythms. *Physica A* 342: 221-233.

Developed deterministic model

$$\begin{split} \frac{\mathrm{d}G}{\mathrm{d}t} &= -a_1 GP_N + d_1 [GP_N] \,, \\ \frac{\mathrm{d}[GP_N]}{\mathrm{d}t} &= a_1 GP_N - d_1 [GP_N] - a_2 [GP_N] P_N + d_2 [GP_{N2}] \,, \\ \frac{\mathrm{d}[GP_{N2}]}{\mathrm{d}t} &= a_2 [GP_{N1}] P_N - d_2 [GP_{N2}] - a_3 [GP_{N2}] P_N + d_3 [GP_{N3}] \,, \\ \frac{\mathrm{d}[GP_{N3}]}{\mathrm{d}t} &= a_3 [GP_{N2}] P_N - d_3 [GP_{N3}] - a_4 [GP_{N3}] P_N + d_4 [GP_{N4}] \,, \\ \frac{\mathrm{d}[GP_{N4}]}{\mathrm{d}t} &= a_4 [GP_{N3}] P_N - d_4 [GP_{N4}] \,, \\ \frac{\mathrm{d}[GP_{N4}]}{\mathrm{d}t} &= a_4 [GP_N] + [GP_{N2}] + [GP_{N3}]) - k_{11} ME_m + k_{12} C_m \,, \\ \frac{\mathrm{d}E_m}{\mathrm{d}t} &= -k_{m1} ME_m + k_{m2} C_m + k_{m3} C_m \,, \\ \frac{\mathrm{d}E_m}{\mathrm{d}t} &= -k_{m1} ME_m - k_{m2} C_m - k_{m3} C_m \,, \\ \frac{\mathrm{d}P_0}{\mathrm{d}t} &= k_5 M - k_{11} P_0 E_1 + k_{12} C_1 + k_{23} C_2 \,, \\ \frac{\mathrm{d}E_1}{\mathrm{d}t} &= -k_{11} P_0 E_1 - k_{12} C_1 - k_{13} C_1 \,, \\ \frac{\mathrm{d}P_1}{\mathrm{d}t} &= -k_{21} P_1 E_2 + k_{22} C_2 + k_{13} C_1 - k_{31} P_1 E_3 + k_{32} C_3 + k_{43} C_4 \,, \end{split}$$

$$\begin{split} \frac{dE_2}{dt} &= -k_{21}P_1E_2 + k_{22}C_2 + k_{23}C_2 \ , \\ \frac{dC_2}{dt} &= k_{21}P_1E_2 - k_{22}C_2 - k_{23}C_2 \ , \\ \frac{dP_2}{dt} &= k_{33}C_3 - k_{41}P_2E_4 + k_{42}C_4 - k_{d1}P_2E_d + k_{d2}C_d - k_1P_2 + k_2P_N \ , \\ \frac{dE_3}{dt} &= -k_{31}P_1E_3 + k_{32}C_3 + k_{33}C_3 \ , \\ \frac{dC_3}{dt} &= k_{31}P_1E_3 - k_{32}C_3 - k_{33}C_3 \ , \\ \frac{dE_4}{dt} &= -k_{41}P_2E_4 + k_{42}C_4 + k_{43}C_4 \ , \\ \frac{dC_4}{dt} &= k_{41}P_2E_4 - k_{42}C_4 - k_{43}C_4 \ , \\ \frac{dE_6}{dt} &= -k_{d1}P_2E_d + k_{d2}C_d + k_{d3}C_d \ , \\ \frac{dE_6}{dt} &= -k_{d1}P_2E_d - k_{d2}C_d - k_{d3}C_d \ , \\ \frac{dP_8}{dt} &= -a_1GP_N + d_1[GP_N] - a_2[GP_{N1}]P_N + d_2[GP_{N2}] - a_3[GP_{N2}]P_N \\ &\quad + d_3[GP_{N3}] - a_4[GP_{N3}]P_N + d_4[GP_{N4}] + k_1P_2 - k_2P_N \end{split}$$

with $G_{tot} = G + GP_N + GP_{N2} + GP_{N3} + GP_{N4} = 1$.

Deterministic model: bifurcation diagram

Developed deterministic model: excitability

Mechanisms of noise-resistance

Mechanisms of noise-resistance in genetic oscillators

Vilar, Kueh, Barkai, Leibler, *PNAS* (2002) 99: 5988-5992

3000

2000

1000

0

a

$$\frac{dR}{dt} = \frac{\beta_R}{\delta_{M_R}} \frac{\alpha_R \theta_R + \alpha'_R \gamma_R \tilde{A}(R)}{\theta_R + \gamma_R \tilde{A}(R)} - \gamma_C \tilde{A}(R)R + \delta_A C - \delta_R R$$
$$\frac{dC}{dt} = \gamma_C \tilde{A}(R)R - \delta_A C$$

Stochastic resonance in circadian clock?

Internal noise stochastic resonance in a circadian clock system

Hou & Xin, J Chem Phys (2003) 119: 11508

Light-noise induced supra-threshold circadian oscillations and coherent resonance in *Drosophila*

Yi & Jia, Phys Rev E (2005) 72: 012902

Conclusions

- Robust circadian oscillations are observed for a limited number of molecules, i.e. some tens mRNA molecules and hundreds proteins molecules.
- **Cooperativity** increases the robustness of the oscillations.
- The periodic forcing of the oscillations (LD cycle) increases the robustness by stabilizing the phase of the oscillations.
- The proximity of a bifurcation point decreases the robustness of the oscillations. In particular, near an excitable steady state, highly irregular oscillations are observed.
- Coupling between cells increases the robustness of the oscillations.

Acknowledgements

Albert Goldbeter

Unité de Chronobiologie Théorique Université Libre de Bruxelles, Belgium

Jean-Christophe Leloup José Halloy Geneviève Dupont Atilla Altinok Claude Gérard

Hanspeter Herzel

Institute for Theoretical Biology Humboldt Universität zu Berlin, Germany

Samuel Bernard Christian Waltermann Sabine Becker-Weimann Florian Geier

Funding

Fonds National Belge de la Recherche Scientifique (FNRS).

Deutsche Forschungsgemeinschaft (SFB)

European Network BioSimulation.