Structure of small genetic networks
and evolution in silico
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e Dynamics in a cell: bistability, oscillations
(circadian , ...)
e Spatial patterns (C. elegans, somites,...)

e Coordinated evolution of several genes/proteins.
e Design of synthetic modules.



A synthetic genetic switch
Two genes a and b that inhibit each other. Two stable steady
states : [A] high with [B] low, and [B] high with [A] low.
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Switching can be induced by an IPTG or a temperature pulse.
Gardner et al, Nature 403:339-342 (2000)
Bistability requires dimerizations (or other interactions).



A synthetic genetic ring oscillator
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The oscillation is based on three genes that repress each other in a
circle (“rock-scissor-paper”).
M. Elowitz and S. Leibler, Nature 403:335-338 (2000)
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V U must be strictly higher than 1
to have bistability, which requires
at least four (and not two ) el-
ementary reactions. [Cherry and
Adler, J. Theor. Biol. (2000)]
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An overrepresented motif in transcriptional networks
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The “feedforward loop"” is overrepresented in the transcriptional
networks of E. Coli and S. Cerevisiae
(Milo et al., Science 298: 824-827(2002)).

Function: a persistence detector?



What are the designs that achieve a given
function?

Can one sample them and add desired
constraints (robustness,...) 7

Easyness of creation, evolvability,...?

Blueprints of useful networks.



Design by evolution/selection in silico.

The inverse of the statistical approach: from the desired task
to the network.

To design modules performing given tasks (e.g. switches and
oscillators), without imposing a priori any structure to the
network, one evolves a collection of virtual “cells”.

P. Frangois and V. Hakim, PNAS, 101 580-585 (2004).



One computer ’'cell’ consists in



One computer ’'cell’ consists in

- a collection of genes Jh

- and associated proteins [ A)

First implementation: transcription and translation
condensed in one single step.

mRNA are included in the present version.
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Representation

Corresponding equations
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The modification of a kinetic constant in an existing
reaction

or the addition of
A new transcriptional regulation

A new post-transcriptional regulation

A new gene

The process is iterated over several generations.



Two concentrations are fixed A;
and A,.

[A]
A,

ODEs are integrated
Fort=T/2,3T/2,5T /2... fitness
is given by the integral (A— Aj)2.

For t = T,2T,3T... fitness is
given by the integral (A — Aj)2.
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Very different from two genes with reciprocal inhibition
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First switch: lactose operon, with allolactose binding to lac
repressor.
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Proposed in 1961 by Monod and Jacob (based on Lac

operon) as an alternative to reciprocal inhibition (Delbriick,
1949) !



First switch: lysis/lysogeny switch in a “simple” phage
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Lactococcal phage TPS901-1 (K. Hammer et al J. Virology
(2003) and unpublished) A: , B:

ClI transcriptionally represses Mor, Mor lifts this repression by
binding to Cl and preventing CI DNA binding.

An ingenious refinement: Cl represses itself so as to avoid
continuous production of repressor. This works because Cl is
a very stable protein and also because self-repression of Cl is
much weaker than CI repression of Mor.



Second switch: developement of competence in B.subtilis ,
Comk activates itself and is repressed by MecA.

ComKA MecA
ClpC
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Smits et al (2005), Maamar and Dubnau (2005): experimental
demonstration that this stripped network is indeed a switch!



Circadian activities of whole animals and single cells
Liu et al, Cell (1997)
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+frq low, but increasing +frq decreasing

Froehlich et al, PNAS (2003)

Organism Activators A Repressors B
Neurospora Crassa WC-1, WC-2 FRQ

Drosophila dCLK PER, TIM

Mammals CLOCK, BMAL PER, CRY

The created networks are working examples without delays or high
Hill coefficients = motivation for of the circadian
rhythms [for Neurospora, P. Francois Biophys. J. 88, 2369
(2005)].



A loop combining transcriptional and post-transcriptional
interaction (i.e. protein-protein interaction) is at the core of
several of these networks.
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This Mixed Feedback Loop has now been found to be

over-represented in S. Cerevisiae and E.Coli (Yeger-Lotem et al,
PNAS 2004).
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Reduced parameters: o = Bpr/(pad;), 1 = BPb/(Pad:)

A small parameter: &,/,/Pay
( P. Francois and V. Hakim, PRE (2005)



The algorithm finds known (with complete description) and
original designs.

An important lesson: The post-transcriptional interactions
play a crucial role: the function of the networks cannot be
understood at all by focusing only on the transcriptional
regulations ( in a complex appears to be a
particularly important mechanism).



e Can one evolve more complicated structures?
e Spatial patterns, morphogenesis?

e A test case:



e Drosophila early embryogenesis is very well studied
(Thieffry and Perkins’s lectures!): a nice bench mark.

e Evolution of a collection of “organisms” (hundred cell
each).

e Fitness: maximise the number of “segments”: the number
of jumps in the concentration of a test protein.

e Only transcriptional interactions for numerical tractability.



Evolution of segmentation in a static gradient
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e Cascades of repressors reminiscent of Drosophila
segmentation network.

e Feedforward loop that gives a general way to express a
gene at an intermediate gradient concentration

Real example: Dorsal activates rhomboid and less efficiently
snail. Snail represses rhomboid. Rhomboid expressed at
intermediate Dorsal concentration (neurogenic ectoderm)

e Reasonable results. What does one find for a dynamic
gradient (short germ insects, somites,...)?



Mouse embryo Zebrafish embryo
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Y. Saga, Nat. Rev. Gen. (2001)



(Cooke & Zeeman (1976) — Palmeirim et al (1997))

Y. Saga, Nat. Rev. Gen. (2001)



e Dynamics as the gradient sweeps across the array.

e Score: numbers of jumps in a concentration of a protein
after the gradient has disappeared.

e Again, only transcriptional interactions for numerical
tractability (delays to account for intermediate steps).



Evolution of segmentation in a temporal gradient
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Segmentation as an oscillating/bistable
transition?

Oscillations when external signal (FGF87?) is high,
bistability when it is low. Bistability encodes the oscillation phase
at the time of transition in a binary (and cell autonomous) way.
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e A simple model of sequential segmentation. Hopefully, useful in
different contexts (somites, short-germ insects, other segmented
structures e.g. limbs ?7,...)

e Very constrained evolutionary path in silico: first bistability to
have persistent activation after disappearance of the gradient, then
repressors added (for creation of high/low boundaries), finally
negative feedback and oscillations. Real evolution?

e Early appearance of sequential segmentation? Multiple
interconversion between the two modes of segmentation? ( new
phylogeny: hymenoptera -long germ wasp Nasonia- at the base of
holometabolous insects -include short and long germ).



Thank you!



Selection of activation energies for temperature compensation:
e 2 10°K increase : T :300°K — 310°K

e the kinetic constants increase > 30%,

e period change < 3%.
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The desired two stable
states are chosen (Aj,Bj)
and (Az,B;) . ODEs are

[B] integrated, the “fitness” is
B, given by the integral (A—

A1)?+ (B — By)?. Pulse of
B protein ODEs are inte-
/ grated, the fitness is given

o | e by the integral (A— Az)? +
t (B— 82)2.
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V U must be strictly higher than 1

to have bistability, which requires

at least four (and not two ) ele- 9
mentary reactions. o e \
[Cherry and Adler, J. Theor. Biol.
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