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Motivation — ever more quantitative data!

In situ hybridization imaging, 2D-PAGE, Mass spectrometry, microarrays, SAGE,
protein arrays, ...are generating enormous amounts of quantitive data on

molecular presence/absence or abundance — including much time series data.




Why model it?

e This data can be hard for biologists to understand / interpret.

e Formulating and fitting dynamical models can:
— Identify important system parameters (reaction rates)
— Test the ability of models to explain the data
— Identify the structure of the system (i.e., what regulates what)

— Reveal detailed temporal (or spatial) properties of the data



Problem formulation

e \We observe a sequence of vectors x(t1), z(t2), ..., x(tT), where
o 0 =11 <t <...<tr arethe observation times

e each z(t;) € RM

e The variables x may be: gene expression levels (MRNA or protein),

metabolite concentrations, phosphorylation levels,. ..
® The observed variables may not include all important system variables

e The ¢; need not be uniformly spaced

Aside: Most of what | will say can be generalized to multiple time series and/or

spatio-temporal data.



Example time series

Consider a system of two genes, in which gene 2 activates gene 1, and gene 1

represses gene 2.

Suppose we measure the expression of two genes, 1 and 2:
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Fitting ODE models

e Assume a model of the form ¢y = f(y, 6), where
e 0 = (01,02,...,0N) is avector or real parameters
e The variables y are a superset of the observed variables x

e Let v’ be the modeled variables corresponding to x



First model for the example time-series

0 5 10 15 20 25
time

To start, we model both variables for a linear ODE:

Y1 0 a Y1

Y2 b O Y2

Aside: Usually the mathematical form of our model is not right! And we may not

know the correct structure!



Formulating the model-fitting problem

e Assume we know good initial conditions y(0) for our model.

e For any 6, let y(t|@) be the solution to y = f(y, 8) from the initial conditions

e Intuitively, we want to find 6 such that for all ¢;
z(t:) =y (t:]0)

e Typically, we seek 6 that minimizes the mean squared error (MSE):

E(Q) = TM ZZ 37] yy t |9))

=1 j53=1

= Z le(t:) — o/ (2:16)]

Aside: The mean squared error can be justified as a maximum likelihood

solution under an i.i.d. N (0, o) observation error model.



Trajectories and errors for several different parameter se

ts
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The error surface




How to minimize MSE?

First principles solution by calculus:

e Write down partial derivatives:

M
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How to minimize MSE?

First principles solution by calculus:

e Write down partial derivatives:

OE(0) 9 1 = , 2
S = T 2@t~ )
i=1 j=1
- 9
= 737 2o 2 2 (1) 30100 g 1)
1=1 )=
® Solve system of equations 8E(,9) =0

Unfortunately. ..
e We often can’t get ¢’ (¢;) in analytic form

e Even if we could, the system of equations may be impossible tos olve

analytically / have many zeros



Numerical minimization of MSE

We can fall back to numerical minimization of MSE by standard methods:
e Gradient descent
e Newton’s method
e |ocal search
e Simplex search (e.g. f m nsear ch in Matlab)

e Simulated annealing



The gradient descent algorithm

e Choose Iinitial parameter set 6"

e Repeat until a stopping criterion reached:
e Compute Vy:
e V't =0"—;V, E
The «; are called step sizes.

Under suitable conditions in E and the a; (Robbins-Monroe), the 8 converge to

a local minimum of £.



How to compute the gradient?

One generic method for computing the partial derivatives of £ with respect to

the parameters 6; is to estimate them by finite differences:
o Letf0'™> = (01,0,...,0; + A, ..., 0n)
e Then for suitably small A,

OFE _ E(0"t?)— E(9)
00; A

Aside: This takes IV + 1 evaluations of £/, which is not terribly efficient.
Aside: Sometimes the centered difference is preferred.

OE _E(0"2) - E(0')
00; 2A




Gradient descent for our example

Gradient computed by finite differences with A = 10~
Step size constant at o;; = 10~ 2.
1000 gradient steps

From several different initial conditions.



From starting point a = 0.1,0 = —0.7
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From starting point a=1,b=—1.5
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From starting point

a=2b=—0.5
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f m nsear ch from starting point a=1,0=—1.5
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f m nsear ch from starting point a =2,b = —0.5
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Motivating simulated annealing

e Gradient descent, Newton’s method, f m nsear ch, local search may all
converge to locally optimal solutions that are not globally optimal.

e Simulated annealing attempts to avoid this problem
— Itis a (randomized) local search algorithm

— It allows “uphill” moves as well as “downhill”, in order to escape local

basins of attraction



Simulated annealing

We begin with initial parameters Ocyrrent.

At each step of the search:

e Generate a parameter set 6’ in the “neighborhood” of O..,rent, Often by a

random perturbation

o If £(0") < E(Ocurrent) then

/
o ecurrent — 9

else with probability exp (Ewcwm;w—E(e’) )

/
® ecurrent — 9

I’ is called the temperature parameter.



The temperature parameter

The value of the temperature parameter affects the behavior of the search:

e If 1" = 400, then all moves are accepted, and Oc.rrent €VOlVes as a

random walk.

e If ' = 0, then only downhill moves are accepted, and 0.y ,rent €VOIVES AS

with a standard local search.

e If0 < T < 400, then uphill moves are sometimes accepted, depending on

how much worse the neighbor is.

Usually, 1" is scheduled to approach zero as the search progresses — allowing

broad exploration at the start, and converging to local search at the end.



Simulated annealing for our example

e 1000 optimization steps

(1000—1) )2

e Temperature 1; = ( 500

e Random neighbor 0 = 6current,; + N(0,0.03)



Simulated annealing results
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What if the data are noisy?

x oisy X,
noisy X,
b
* %
¥
%
x %%

25



Error surface is very little changed!




What if we only observe x?
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The error surface




Structure Learning & Regression Approach

Done on blackboard!



Finite difference estimates of derivatives
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Finite difference estimates of derivatives
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Minimizing
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can be done analytically, yielding a = 0.9597 and b = —0.958]1.




Central difference estimates of derivatives
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Fitting full interconnect matrix

1 6%3“6 00036060 6“0”9 lx true dx /dt
® o ° © ® ® oo © x (rue dx /dt
o e ® o o © o estdx/dt |
® . e e o © est dx_/dt
@0 @ e e © o 2
° ° 8 o o . ° ° 3 o
-1 9999 L Q@ @g | 999 Q9 Qg ®g
0 5 10 15 20 25
time
Minimizing
ST - - 1 F 1112
1 Z T1(t;) A1 Aixs z1(ts)
I i—1 352(%‘) Az Az x2(t;)
_ —0.00003 0.9589
yields A =
—0.9589  —0.00002




What if the data are noisy?
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Yields A =

Fitting a full interconnect matrix
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Functional data analysis

Done on board!



Conclusions

Usually, we cannot solve parameter fitting problems analytically

Numerical methods for fitting to trajectories may be subject to local
optimality (grad. descent, Newton, fminsearch, local search) or

computationally intensive (simulated annealing).

However, they apply most generally, including when some model variables

are not observed and/or data are noisy.

Regression-based methods (including functional data analysis) are

computationally efficient, if not analytically solvable.

However, they apply only when all model variables are observed (noise
allowed), and when the model is simulated, it may not match the observed

trajectory well.



