
Fitting dynamical models to time series data &
application to the Drosophila segmentation network

Theodore J. Perkins

McGill University

perkins@mcb.mcgill.ca www.mcb.mcgill.ca/∼perkins

Outline

1. Methods for fitting dynamical models to time series data

• Motivation for fitting dynamical models

• Typical formulation of the problem (for ODEs)

– Analytical intractability

– Numerical methods & examples

• The regression formulation of the problem

– Functional data analysis

2. Application to the segmentation network of Drosophila melanogaster

Motivation – ever more quantitative data!

In situ hybridization imaging, 2D-PAGE, Mass spectrometry, microarrays, SAGE,

protein arrays, . . . are generating enormous amounts of quantitive data on

molecular presence/absence or abundance – including much time series data.

Why model it?

• This data can be hard for biologists to understand / interpret.

• Formulating and fitting dynamical models can:

– Identify important system parameters (reaction rates)

– Test the ability of models to explain the data

– Identify the structure of the system (i.e., what regulates what)

– Reveal detailed temporal (or spatial) properties of the data

– . . .

Problem formulation

• We observe a sequence of vectors x(t1), x(t2), . . . , x(tT), where

• 0 = t1 < t2 < . . . < tT are the observation times

• each x(ti) ∈ ℜM

• The variables x may be: gene expression levels (mRNA or protein),

metabolite concentrations, phosphorylation levels,. . .

• The observed variables may not include all important system variables

• The ti need not be uniformly spaced

Aside: Most of what I will say can be generalized to multiple time series and/or

spatio-temporal data.

Example time series

Consider a system of two genes, in which gene 2 activates gene 1, and gene 1

represses gene 2.

Suppose we measure the expression of two genes, 1 and 2:

0 5 10 15 20 25
−1

0

1

time

X

X1
X2

Fitting ODE models

• Assume a model of the form ẏ = f(y, θ), where

• θ = (θ1, θ2, . . . , θN) is a vector or real parameters

• The variables y are a superset of the observed variables x

• Let y′ be the modeled variables corresponding to x

First model for the example time-series

0 5 10 15 20 25
−1

0

1

time

X

X1
X2

To start, we model both variables for a linear ODE:




ẏ1

ẏ2



 =





0 a

b 0









y1

y2





Aside: Usually the mathematical form of our model is not right! And we may not

know the correct structure!

Formulating the model-fitting problem

• Assume we know good initial conditions y(0) for our model.

• For any θ, let y(t|θ) be the solution to ẏ = f(y, θ) from the initial conditions

• Intuitively, we want to find θ such that for all ti

x(ti) ≈ y
′(ti|θ)

• Typically, we seek θ that minimizes the mean squared error (MSE):

E(θ) =
1

TM

T
∑

i=1

M
∑

j=1

(xj(ti) − y
′

j(ti|θ))
2

=
1

TM

T
∑

i=1

‖x(ti) − y
′(ti|θ)‖

2

Aside: The mean squared error can be justified as a maximum likelihood

solution under an i.i.d. N(0, σ) observation error model.

Trajectories and errors for several different parameter se ts

0 5 10 15 20 25
−2

0

2

time

X
, Y

a=0.2 b=−0.6 E(a,b)=1.5773

X1
X2
Y1
Y2

0 5 10 15 20 25
−1

0

1

time

X
, Y

a=0.5 b=−0.3 E(a,b)=0.88239

X1
X2
Y1
Y2

0 5 10 15 20 25
−1

0

1

time

X
, Y

a=1 b=−1 E(a,b)=0

X1
X2
Y1
Y2

The error surface

−2
−1.5

−1
−0.5

0

0

1

2

0

1

2

3

4

5

b

a

E
(a

,b
)

How to minimize MSE?

First principles solution by calculus:

• Write down partial derivatives:

∂E(θ)

∂θi

=
∂

∂θi

1

TM

T
∑

i=1

M
∑

j=1

(xj(ti) − y
′

j(ti|θ))
2

=
1

TM

T
∑

i=1

M
∑

j=1

2(xj(ti) − y
′

j(ti|θ))
∂

∂θi

y
′

j(ti|θ)

• Solve system of equations ∂E(θ)
∂θi

= 0

How to minimize MSE?

First principles solution by calculus:

• Write down partial derivatives:

∂E(θ)

∂θi

=
∂

∂θi

1

TM

T
∑

i=1

M
∑

j=1

(xj(ti) − y
′

j(ti|θ))
2

=
1

TM

T
∑

i=1

M
∑

j=1

2(xj(ti) − y
′

j(ti|θ))
∂

∂θi

y
′

j(ti|θ)

• Solve system of equations ∂E(θ)
∂θi

= 0

Unfortunately. . .

• We often can’t get y′(ti) in analytic form

• Even if we could, the system of equations may be impossible tos olve

analytically / have many zeros

Numerical minimization of MSE

We can fall back to numerical minimization of MSE by standard methods:

• Gradient descent

• Newton’s method

• Local search

• Simplex search (e.g. fminsearch in Matlab)

• Simulated annealing

• . . .

The gradient descent algorithm

• Choose initial parameter set θ0

• Repeat until a stopping criterion reached:

• Compute ∇θiE

• θi+1 = θi − αi∇θiE

The αi are called step sizes.

Under suitable conditions in E and the αi (Robbins-Monroe), the θi converge to

a local minimum of E.

How to compute the gradient?

One generic method for computing the partial derivatives of E with respect to

the parameters θi is to estimate them by finite differences:

• Let θi+∆ = (θ1, θ2, . . . , θi + ∆, . . . , θN)

• Then for suitably small ∆,

∂E

∂θi

≈
E(θi+∆) − E(θ)

∆

Aside: This takes N + 1 evaluations of E, which is not terribly efficient.

Aside: Sometimes the centered difference is preferred.

∂E

∂θi

≈
E(θi+∆) − E(θi−∆)

2∆

Gradient descent for our example

• Gradient computed by finite differences with ∆ = 10−4.

• Step size constant at αi = 10−2.

• 1000 gradient steps

• From several different initial conditions.

From starting point a = 0.1, b = −0.7

−2
−1.5

−1
−0.5

0

0

1

2

0

1

2

3

4

5

b

a

E
(a

,b
)

From starting point a = 1, b = −1.5

−2
−1.5

−1
−0.5

0

0

1

2

0

1

2

3

4

5

b

a

E
(a

,b
)

From starting point a = 2, b = −0.5

−2−1.5−1−0.50

0

1

2

0

1

2

3

4

5

b

E
(a

,b
)

a

fminsearch from starting point a = 1, b = −1.5

−2−1.5−1−0.50

0

1

2

0

1

2

3

4

5

b

E
(a

,b
)

a

fminsearch from starting point a = 2, b = −0.5

−2−1.5−1−0.50

0

1

2

0

1

2

3

4

5

b

E
(a

,b
)

a

Motivating simulated annealing

• Gradient descent, Newton’s method, fminsearch, local search may all

converge to locally optimal solutions that are not globally optimal.

• Simulated annealing attempts to avoid this problem

– It is a (randomized) local search algorithm

– It allows “uphill” moves as well as “downhill”, in order to escape local

basins of attraction

Simulated annealing

We begin with initial parameters θcurrent.

At each step of the search:

• Generate a parameter set θ′ in the “neighborhood” of θcurrent, often by a

random perturbation

• If E(θ′) < E(θcurrent) then

• θcurrent = θ′

else with probability exp
(

E(θcurrent)−E(θ′)
T

)

• θcurrent = θ′

T is called the temperature parameter.

The temperature parameter

The value of the temperature parameter affects the behavior of the search:

• If T = +∞, then all moves are accepted, and θcurrent evolves as a

random walk.

• If T = 0, then only downhill moves are accepted, and θcurrent evolves as

with a standard local search.

• If 0 < T < +∞, then uphill moves are sometimes accepted, depending on

how much worse the neighbor is.

Usually, T is scheduled to approach zero as the search progresses – allowing

broad exploration at the start, and converging to local search at the end.

Simulated annealing for our example

• 1000 optimization steps

• Temperature Ti =
(

(1000−i)
1000

)2

• Random neighbor θ′

j = θcurrent,j + N(0, 0.03)

Simulated annealing results

−2
−1.5

−1
−0.5

0

0

1

2

0

1

2

3

4

5

b

a

E
(a

,b
)

What if the data are noisy?

0 5 10 15 20 25
−2

0

2

time

noisy x
1

noisy x
2

Error surface is very little changed!

−2
−1.5

−1
−0.5

0

0

1

2

0

1

2

3

4

5

b

a

E
(a

,b
)

What if we only observe x1?

0 5 10 15 20 25
−1

0

1

time

X

X1

The error surface

−2
−1.5

−1
−0.5

0

0

1

2

0

1

2

3

4

5

b

a

E
(a

,b
)

Structure Learning & Regression Approach

Done on blackboard!

Finite difference estimates of derivatives

0 5 10 15 20 25
−1

0

1

time

true dx
1
/dt

true dx
2
/dt

est dx
1
/dt

est dx
2
/dt

Finite difference estimates of derivatives

0 5 10 15 20 25
−1

0

1

time

true dx
1
/dt

true dx
2
/dt

est dx
1
/dt

est dx
2
/dt

Minimizing

1

TM

T
∑

i=1

∥

∥

∥

∥

∥

∥





ˆ̇x1(ti)

ˆ̇x2(ti)



 −





0 a

b 0









x1(ti)

x2(ti)





∥

∥

∥

∥

∥

∥

2

can be done analytically, yielding a = 0.9597 and b = −0.9581.

Central difference estimates of derivatives

0 5 10 15 20 25
−1

0

1

time

true dx
1
/dt

true dx
2
/dt

est dx
1
/dt

est dx
2
/dt

Minimizing

1

TM

T
∑

i=1

∥

∥

∥

∥

∥

∥





ˆ̇x1(ti)

ˆ̇x2(ti)



 −





0 a

b 0









x1(ti)

x2(ti)





∥

∥

∥

∥

∥

∥

2

yields a = 0.9589 and b = −0.9589.

Fitting full interconnect matrix

0 5 10 15 20 25
−1

0

1

time

true dx
1
/dt

true dx
2
/dt

est dx
1
/dt

est dx
2
/dt

Minimizing

1

TM

T
∑

i=1

∥

∥

∥

∥

∥

∥





ˆ̇x1(ti)

ˆ̇x2(ti)



 −





A11 A12

A21 A22









x1(ti)

x2(ti)





∥

∥

∥

∥

∥

∥

2

yields A =





−0.00003 0.9589

−0.9589 −0.00002



.

What if the data are noisy?

0 5 10 15 20 25
−2

0

2

time

noisy x
1

noisy x
2

0 5 10 15 20 25
−2

0

2

time

true dx
1
/dt

true dx
2
/dt

est dx
1
/dt

est dx
2
/dt

Fitting a full interconnect matrix

Yields A =





−0.0337 0.6994

−0.7886 0.0298





0 5 10 15 20 25
−2

0

2

time

noisy x
1

noisy x
2

y
1

y
2

Functional data analysis

Done on board!

Conclusions

• Usually, we cannot solve parameter fitting problems analytically

• Numerical methods for fitting to trajectories may be subject to local

optimality (grad. descent, Newton, fminsearch, local search) or

computationally intensive (simulated annealing).

• However, they apply most generally, including when some model variables

are not observed and/or data are noisy.

• Regression-based methods (including functional data analysis) are

computationally efficient, if not analytically solvable.

• However, they apply only when all model variables are observed (noise

allowed), and when the model is simulated, it may not match the observed

trajectory well.

