Part 2: Application to the *Drosophila* segmentation network

Theodore J. Perkins

McGill University

perkins@mcb.mcgill.ca www.mcb.mcgill.ca/~perkins

<u>Outline</u>

- The segmentation network
- In situ hybridization expression data
- Modeling work of Reinitz et al.
 - Model formulation & fitting
 - Shifting of gap gene domains
- My own modeling work
 - Faster model-fitting & recovery of Reinitz's results
 - Alternative network architectures
 - Alternative model formulations

The segmentation network

Α maternal genes • Establishes "positional information" - dividing anteriorposterior axis of embryo into body segments gap genes Broad architecture is a genetic cascade with groups of interpair-rule genes acting genes segment polarity genes • Expression of gap and pairrule genes is transient homeotic genes

Pattern formation

Pattern form during cleavage cycles 13 (or 12?) and 14A, a period of \sim 1.5 hours. (Except maternal genes, whose gradients are established much earlier.)

In situ hybridization data

Up to three (species of) proteins at a time are labeled with fluorescent antibodies and imaged under a microscope.

Nuclear masking

Nuclei are detected by thresholding based on intensity, and finding connected groups of pixels.

Per nucleus intensities

Intensity in each nucleus in each channel is computed by averaging over the pixels associated to the nucleus.

Creating expression profiles

Intensities are averaged vertically within a window centered along the A-P axis of the embryo, at a resolution of 1% embryo length (EL).

Creating expression profiles

Intensities are averaged vertically within a window centered along the A-P axis of the embryo, at a resolution of 1% embryo length (EL).

eve in red, hb in green, kni in blue (green and blue are switched from previous slide)

Creating a time series

- Labeling and imaging destroys the embryo, so the preceding must be repeated – at many different times and for different combinations of genes.
- The profiles are combined to produce "average" wild-type expression at 10 times during cleavage cycles 12-14A, at 1% EL resolution (shown here between 35% EL and 92% EL).

Some previous work based on this data

- Reinitz & Sharp (1995) "Mechanism of eve stripe formation" Mechanisms of Development 49: 133+
- Jaeger et al. (2004) "Dynamic control of positional information in the early Drosophila embryo" Nature 430: 368+
- Jaeger et al. (2004) "Dynamical Analysis of Regulatory Interactions in the Gap Gene System of *Drosophila melanogaster*" *Genetics* 167: 1721+
- Perkins et al. (2006) "Reverse Engineering the Gap Gene Network of Drosophila melanogaster" PLoS Comp. Bio 2(5):e51
- Janssens et al. (2006) "Quantitative and predictive model of transcriptional control of the *Drosophila melanogaster even skipped* gene" *Nature Genetics* 38: 1159+

We'll consider models of pattern formation for the four trunk gap genes (hb, Kr, kni, gt) with exogenous inputs (bcd,cad,tll):

A PDE model for protein levels

Let x denote space, t time, and $v^a(x, t)$ the expression of protein a at space x and time t. Then:

where

$$P^{a}(v(x,t)) = R^{a}g\left(\sum_{b} T^{ab}v^{b}(x,t) + h^{a}\right)$$

where $g(u) = \frac{1}{2} \left(\frac{u}{\sqrt{u^2 + 1}} + 1 \right)$ is sigmoidal in the range [0, 1].

Can the model explain the data?

They fit all parameters using multiple runs of a parallel simulated annealing algorithm. Simulated expression from the best fit:

How do the fitted models explain the data?

Signs of fitted parameters in best 10 runs

Α	bcd	cad	hb	Kr	gt	kni	tll
hb	0/0/10	0/0/10	0/0/10	0/10/0	0/2/8	10/0/0	1/8/1
Kr	0/0/10	0/0/10	9/1/0	0/0/10	10/0/0	9/1/0	10/0/0
gt	0/0/10	0/0/10	9/0/1	10/0/0	0/3/7	1/9/0	10/0/0
kni	3/0/7	0/0/10	10/0/0	6/4/0	9/1/0	0/0/10	10/0/0

Estimate of regulatory architecture

Comparison to previous models

Α	Hb regulation	Kr regulation	Gt regulation	Kni regulation	
Network	Bcd Cad Kr Gt Kni Tl	Bcd Cad Gt Kni Hb	Bcd Cad Gt Kr Hb	Bcd Gad Ani Ani Ani Ani	
R-P & J	$+ \cdot + - \cdot \cdot \cdot$	$+ \cdot + - \cdot$	$+ + \cdot - \cdot$	++-+	
S & T	$+ \cdot + - \cdot \cdot \cdot$	$+ \cdot + - \cdot \cdot$	++···	$++-\cdot-\cdot$	
Jaeger et al.	+++0+-0	++ - +	+++0-	+++-	

- R-P & J from: Rivera-Pomar & Jäckle (1996) Trends in Genetics 12:478–483
- S & T from: Sanchez and Thieffry (2001) Journal of Theoretical Biology 211: 115–151
- Jaeger et al. from: Jaeger et al. (2004) Nature 430:369–371, and Jaeger et al. (2004) Genetics 167:1721–1737

Shifting of Kr, Kni, and post-Gt domains

Model prediction of production rate

Verification by joint mRNA and protein staining

Repressive chain causing the shift: Hb-Gt-Kni-Kr

Limitations of the Jaeger et al. methodology

• Computation time

Limitations of the Jaeger et al. methodology

- Computation time of 2 CPU years
- No explicit testing of alternative regulatory hypotheses/architectures
- No testing of alternative modeling formalisms

Perkins et al. (2006)

- First goal: Speed up model fitting!
- Second goal: Explore alternative network architectures and modeling formalisms.

First fit

For first experiment, assume same model type as Jaeger et al.:

where

$$P^{a}(v(x,t)) = R^{a}g\left(\sum_{b} T^{ab}v^{b}(x,t) + h^{a}\right)$$

where $g(u) = \frac{1}{2} \left(\frac{u}{\sqrt{u^2 + 1}} + 1 \right)$.

How to fit faster, without sacrificing quality?

1. Estimate $\frac{\partial v^a(x,t)}{\partial t}$

(More precisely, estimate $P^{a}(x,t)$, γ^{a} , D^{a})

- 2. Fit estimated production rates essentially a logistic regression problem (Optimize R^a, T^{ab}, h^a so that $P^a(x, t) \approx R^a g \left(\sum_b T^{ab} v^b(x, t) + h^a \right)$)
- 3. Starting from $R^a, T^{ab}, h^a, \gamma^a, D^a$ above, tune parameters so that simulated expression fits data well

Step 1: Estimate $P^a(x,t), \gamma^a, D^a$

$$\frac{\partial v^a(x,t)}{\partial t} = P^a(x,t) - \gamma^a v^a(x,t) + D^a \frac{\partial^2 v^a(x,t)}{\partial x^2}$$

- Production given by quadrilateral patches of space-time
- Optimize so simulated expression matches observed

Step 2: Estimate R^a, T^{ab}, h^b based on $P^a(x, t)$

$$P^{a}(x,t) = R^{a}g\left(\sum_{b} T^{ab}v^{b}(x,t) + h^{a}\right)$$

• Repeated gradient descent to minimize sum squared error

Simulating PDE with $R^a, T^{ab}, h^a, \gamma^a, D^a$ gives poor fit

Step 3: Tune $R^a, T^{ab}, h^a, \gamma^a, D^a$ to get good fit

• Repeated stochastic local search

Results

Obtained similar quality to Jaeger et al. (2004a,b)... in 36 hours!

Data (red); Jaeger et al. (green, RMS 12.08); Our fit (blue, RMS 12.29)

Results

Obtained similar architecture to Jaeger et al. (2004a,b)

	Hb regulation	Kr regulation	Gt regulation	Kni regulation	
Network	Bcd Cad Kr Gt TII TII	HXGX HD Ani Ani	HXGXHCBCd HXGXHCBCd	Bcd Cad Kr Gt Kni TII	
R-P & J	$+\cdot+-\cdot\cdot$	$+\cdot\mp\cdot$	$++\cdot-\cdot$	$++-+- \cdot -$	
Jaeger et al.	+++0+-0	++-+	+++0-	+++-	
Unc-GC	+-+-+	++-+	++++-	+++-	

Aside: One thing we seem to get right: post-Hb domain activated by TII and sustained by Hb autoactivation.

Is that the only regulatory architecture that works?

- Next, we fit a model of the same form but limited to the RPJ regulatory relationships
- Regulatory weights T^{ab} corresponding to links not in the RPJ model are fixed at zero
- Regulatory weights T^{ab} corresponding to link in the RPJ model are constrained to have the appropriate sign
- A few exceptions:
 - We allowed TII to activate Hb
 - There was an extra negative weight T^{Kr,Hb^2} multiplied by $(v^{Hb}(x,t))^2$, to allow Hb to have a dual regulatory effect on Kr

Model restricted to RPJ structure

RMS error 15.88

Does the mathematical form of the model matter?

- Next, we fit a piecewise-constant ("logical") model for production
- We assumed production if at least one activator and no repressors exceed thresholds

$$P^{Hb} = \begin{cases} R^{Hb} & \text{if } (v^{Bcd} > 20 \text{ or } v^{Hb} > 90) \text{ and } v^{Kr} < 140 \\ & \text{and } v^{Kni} < 10 \\ 0 & \text{otherwise} \end{cases}$$

 Optimized thresholds, but not structure of network – we borrowed the structure of the first, unconstrained fit

Logical model with UncGC structure

RMS error 14.83

Logical model with RPJ structure

RMS error 21.91

"Consensus" network model

Α	Hb regulation	Kr regulation	Gt regulation	Kni regulation	
Network	Bcd Cad Kr Gt Kni TII	Bcd Cad Hb Kr Kni Tll	Bcd Cad Hb Kr Kr Gt Kni Tll	Bcd Cad Hb Kr Kr Gt Kni TII	
Unc-GC	+-+-+-+	++ - +	++-++-	+ + + -	
Unc-Logic	$ +-+-\cdot-+$	$ +\oplus \ominus \oplus\ominus$	$ ++\Theta-+\cdot\Theta $	$+\oplus -\ominus -\oplus \ominus$	
RPJ-GC	$ + \cdot + - \cdot \cdot +$	$ +\cdot+-\cdot$	$ ++\cdot-\cdot\ominus-$	$\oplus + - \oplus - \cdot -$	
RPJ-Logic	$ +\cdot+-\cdot+$	$ + \cdot \oplus - \cdot$	$ ++\cdot-\cdot\ominus-$	$+\oplus -\oplus \ominus \cdot \ominus$	
Combined	$+ \cdot + - \cdot - +$	$+ \cdot - +$	+++	$++-\cdot-$	
R-P & J	$+ \cdot + - \cdot \cdot \cdot$	$ + \cdot + - \cdot$	$+$ + \cdot $ \cdot$ $ -$	++-+-	
S & T	$ +\cdot+-\cdot\cdot\cdot$	$ +\cdot+-\cdot\cdot $	$ ++\cdot\cdot\cdot $	$++-\cdot-\cdot$	
Jaeger et al.	+++0+-0	++-+	+++0-	+ + + -	

Conclusions of Part 2

- Quantitative model-fitting by simulated annealing (Reinitz)
 - Recovered *de novo* the regulatory architecture of the gap gene system
 - Revealed previously undetected & unexplained shifts in the expression domains of Kr, Kni and Gt
- Faster model fitting based on a hybrid of the regression approach and direct optimization (Perkins)
 - Essentially recovered Reinitz's results, but hundreds of times faster
 - May have explained formation of post-Hb correctly
 - There is not a unique regulatory architecture capable of accounting for the data
 - Alternative mathematical forms for the model can explain the data
- Future work includes relating the dynamical models to more biologically meaningful parameters related to promoter sequence

That's all folks!