

Institut national de la santé et de la recherche médicale

Technologies Avancées
pour le Génome et la Clinique
ERM 206 INSERM

Logical modelling of genetic regulatory networks

Contents

- Boolean modelling of gene networks
- Multilevel logical modelling
- Regulatory circuits
- Application to Drosophila segmentation

Biological regulatory networks

Abstraction levels *versus* biological questions:

- Molecular level: biochemical networks, signal transduction
- Genetic level: genetic regulatory networks
- Inter-cellular level: cell differentiation, tissues, patterns
- Macroscopic levels (organs, physiology...)

Boolean formalism : synchronous updating (1)

interaction graph

logical equations

interaction matrix

(xy) _t	(xy) _{t+1}
++ 00	11
[01]	01
[10]	10
11	00
state	table

Boolean formalism : synchronous updating (2)

$$\begin{cases} \mathbf{x}_{t+1} = \overline{\mathbf{z}}_t \\ \mathbf{y}_{t+1} = \overline{\mathbf{x}}_t \\ \mathbf{z}_{t+1} = \overline{\mathbf{y}}_t \end{cases}$$

interaction graph

(xyz) _t	$(xyz)_{t+1}$									
000	111									
001	011									
010	110									
011	010									
100	101									
101	001									
110	100									
111	000									
state t	state table									

logical equations

interaction matrix

+++ 000 $\rightarrow 01\overline{1} \rightarrow \overline{0}10$ 001 Xyz <u>1</u>01 ← 100 · 111

spontaneous state transitions

Boolean formalism : asynchronous updating (1)

interaction graph

logical equations

interaction matrix

ху	XY
00	11
[01]	01
[10]	10
11	00

spontaneous state transitions

state table

Boolean formalism: asynchronous updating (2)

interaction graph

XYZ	xyz
000	111
001	011
010	110
011	010
100	101
101	001
110	100
111	000

logical equations

interaction matrix

state table

Boolean formalism : logical operators : OR

$$\begin{cases} X = x + \overline{y} \\ Y = x \end{cases}$$

interaction graph

logical equations

interaction matrix

xy	XY
00	10
01	00
10	11
[11]	11

spontaneous state transitions

state table

Boolean formalism : logical operators: AND

$$\begin{cases} X = x . \overline{y} \\ Y = x \end{cases}$$

interaction graph

logical equations

interaction matrix

ху	XY
[00]	00
01	00
10	11
11	01

state table

spontaneous state transitions

Regulatory circuits

Characteristics	Positive circuits	Negative circuits
Number of negative interactions	Even	Odd
Dynamical property	Maximal level	
Biological property	Differentiation	Homeostasis
Examples	- cl cro	- tat rev +

Feedback circuits & Thomas' rules

- A positive feedback circuit is necessary to generate multiple stable states or attractors
- A negative feedback circuit is necessary to generate homeostasis or sustained oscillatory behaviour

Thomas R (1981). Springer Series in Synergics 9: 180-193.

Mathematical theorems and demonstrations:

- ✓ In the differential framework:
 - Soulé C (2005). *ComPlexUs* **1**: 123–133.

✓ In the discrete framework:

- Remy E, Ruet P, Thieffry D (2006). *LNCIS* **341**: 263-70.
- Richard A (2006). *PhD thesis*, University of Evry, France.

Cf. also Thomas, Snoussi, Plahte, Aracena & Demongeot...

Remy E, Mosse B, Chaouiya C, Thieffry D (2003). *Bioinformatics* **10**: ii172-8.

Circuit functionality context

This system typically gives two stable states **01** and **10**

Circuit functionality context

This system typically gives two stable states, now $\{B,C,D\} = 011$ and 100

Circuit functionality context

Circuit behaviour depends on the effect of A on B If A alone is able to switch OFF B:

- In the presence of A:
- → only one stable state with {A,B,C,D}= 1011
- In the absence of A:
- → two stable states 0100 and 0011
- The positive cross-inhibitory circuit
- involving **B** and **C** is thus **functional**

only in the **absence of A**.

Development of a **computational algorithm** enabling the **analysis** of the **functionality** of **feedback circuits** in the **discrete case** (Naldi *et al*, in prep).

Multilevel modelling of regulatory networks

✓ A graph describes the interactions between genes or regulatory products

✓ **Discrete levels** of expression associated to each gene (logical variables) and interaction

✓ Logical parameters define the effect of combinations of incoming interactions $K_B(\emptyset)=0$ $K_B(\{A,1\})=1$ $K_B(\{A,2\})=0$

 The dynamics is represented by a State Transition Graph (here, all possible trajectories)

Chaouiya C, Remy E, Mossé B, Thieffry, D (2003). LNCIS 294: 119-26.

GINsim (Gene Interaction Networks simulation)

Available at http://gin.univ-mrs.fr/GINsim

Gonzalez A, Naldi A, Sánchez L, Thieffry D, Chaouiya C (2006). *Biosystems* 84: 91-100.

Applications

- Drosophila development (IBDML)
 - Genetic control of segmentation (L Sánchez, C Chaouiya)
 - Compartment formation in imaginal disks (A. Gonzalez)
- Cell cycle (DIAMONDS STREP) (A Fauré)
 - Yeast (S. cerevisiae)
 - Mammalian cells

T cell differentiation and activation (A Naldi)

- Differentiation: Th1/Th2, Regulatory T cells, lymphoid lineages
- TCR signalling

Drosophila Development

Genetic data

Maternal mutants

High troughput functional arrays: lof mutants, RNAi... Patterns of gene expression (mRNAs or proteins)

Numerisation + registration + integration → database FlyEx

2832 images of 14 segmentation gene expression patterns from 954 embryos

Simultaneous labelling of **HB**, **KR** & **GT** Proteins in *Drosophila* embryo around cell cycle 13 (courtesy John Reinitz).

Initiation of segmentation in Drosophila

Sánchez L & Thieffry D (2001) *J theor Biol* **211**: 115-41

Thieffry D & Sánchez L (2002) An NY AcadSci **981**: 135-53

Sánchez L & Thieffry D (2003) *J theor Biol* **224**: 517-37

Sánchez L, Chaouiya C & Thieffry D (in prep.)

Gap Module

Simulation of the Gap Module

Gap Module - Simulation (gt, hb_{zyg}, Kr, kni)

Simulation of maternal and gap loss-of-function mutations

Genetic background	()	Final GT, HB,	state KR, KNI)		Observations/predictions
	А	В	С	D	-
Wildtype	1300	0220	0111	1000	
Bicoid	00 01	0001	0001	1000	loss of GT in region A loss of HB in ABC and of KR in BC KNI expands anteriorly into region AB
Hunchback _{mat}	1300	0220	0111	1000	no significant effect
caudal	1300	0220	01 20	0000	increase of KR in region C loss of KNI in region C loss of GT in region D
giant	0 300	0220	0111	0 00 1	KNI expands posteriorly into D
Krüppel	1300	120 0	1 1 00	1000	GT expands into regions B and C Loss of KNI in region C
knirps	1300	0220	01 20	1000	increase of KR in region C
Hunchback _{mat&zyg}	1 0 00	100 0	1000	1000	GT expands into regions B and C loss of KR in regions B and C loss of KNI in region C
giant-Krüppel	0300	0200	0101	0 00 1	KNI expands posteriorly into region D
Krüppel-knirps	1300	1200	1 100	1000	GT expands into regions B and C
giant-knirps	0 300	0220	01 20	0000	increase of KR in region C

4 trunk domains

Anterior pole <

Posterior pole

Drosophila segmentation control

Sánchez L & Thieffry D (2003) *J theor Biol* **224**: 517-37

Pair-rule genes expression patterns

Pair-rule logical model

Prediction of pair-rule *cis*-regulatory mutants

Genetic background	stable states							Embryo regions	EN/WG expression	(partially) functional circuits	Comments
	vparszd				Z	d					
wild-type	0	0	1	0	0	0	1	III	-	eve (+), eve/run (+),	
	0	1	1	1	1	0	0	I, IV	Wg	eve/slp (+), prd/odd (+),	
	1	1	1	1	0	2	0	II	En	slp/ftz (+), eve-ftz-slp (-),	
	3	2	0	0	0	0	0	V	En	prd/odd/ftz (+)	
eve	0	0	1	0	0	0	1	III	-	prd/odd (+) slp/ftz (+)	Replacement of odd
auto-	0	1	1	1	1	0	0	I, IV, (V)	Wg	prd/odd/ftz (+)	En-stripes by Wg-
regulation	1	1	1	1	0	2	0	II, (V)	En		stripes
Ft7	0	0	1	0	0	0	1	III	-	eve (+), eve/run (+),	
auto-	0	1	1	1	1	0	0	I, IV	$\mathbf{W}\mathbf{g}$	eve/slp (+), prd/odd (+),	Loss of even En -
regulation	1	1	1	1	0	1	0	II	-	slp/ftz (+), eve-ftz-slp (-),	stripes
- Summon	3	2	0	0	0	0	0	V	En	prd/odd/ftz (+)	

Eve Prd Ppa Run Slp Ftz Odd

Drosophila segmentation control

Sánchez L, Chaouiya C & Thieffry D (in prep.)

Segment Polarity system: pair-rule input

Segment Polarity system: intercellular signalling

Logical modelling of the Segment Polarity module

Collaboration with Lucas SANCHEZ (CIB, Madrid)

Dynamical analysis: strategy

- Single cell analysis -> delineation of possible stable states
 (= cellular states) for different Hh and Wg input configurations
- **Chaining of 6 cells** trough Wg and Hh signalling.
- Use of constraint programming (or decision diagrams) to identify all multicellular stable states
- Classification of multi-cellular stable patterns (symmetries)
- Use of Petri net (or Model checking) tools to assess the reachability of relevant differentiation states from relevant initial conditions
- Feedback circuit analysis

Wild type encapsulated cell

5 differentiation states depending on inputs combinations:

Wg	Hh	Wg	Fz	Dsh	Slp	Nkd	En	Hh	Ci	Ciact	Cirep	Pka	Ptc	State
0	0	0	0	0	0	1	0	0	1	0	1	2	1	Trivial
0	1	0	0	0	0	1	0	0	1	1	0	0	0	Ci+Ci_act
0	1	2	1	1	1	2	0	0	1	2	0	0	0	Wg
1	0	0	1	1	0	0	1	1	0	0	0	0	0	En
1	0	0	1	1	1	2	0	0	1	1	0	2	2	Nkd
1	1	2	1	1	1	2	0	0	1	2	0	0	0	Wg
1	1	0	1	1	0	0	1	1	0	0	0	0	0	En
$\overline{\frown}$		-		•	•	-	•	•	•	-	-	•	-	

Inputs coming from neighbouring cells

Wild type multicellular behaviour

- A priori, there are 5⁶ possible combinations of the 5 unicellular stable states.
- The intercellular constraints enable only 59 possible combinations
- 37 remaining combinations after discarding the symmetrical ones (eg TTTTEW <=>EWTTTT)
- Reachability analysis -> two multi-cellular outcome accessible

from a relatively broad range of initial conditions:

Simulation of perturbations

 Single loss-of-functions of Wg, En, Hh, or Ci give rise to a unique trivial (like) pattern:

Double loss-of function of Wg/Ptc gives rise to a unique pattern:

• Ectopic En expression gives also rise to a unique pattern:

Wg	Fz	Dsh	Slp	Nkd	En	Hh	Ci	Ciact	Cirep	Pka	Ptc
0	0	0	0	0	1	1	0	0	0	0	0

More complex perturbations...

 Single Ptc loss-of-function gives rise to several possible multi-cellular stable states, including a pattern with Wg posterior extension and posterior ectopic En expression

Feedback circuit analysis: functional intracellular circuits (1)

En-Slp circuit functional when Dsh=1

Enables **two different cellular states** in the presence of Wg signalling, one with En ON and SIp OFF, the other with En OFF and SIp ON

Feedback circuit analysis: functional intracellular circuits (2)

Wg circuits functional when En=0

Enables **different stable states** with no, low or high Wg expression when En is OFF

Feedback circuit analysis: functional intercellular circuit

Forces the **combination** of specific neighbouring cellular states

Novel insights

- The **pair-rule signal** needs to be **operative** until the inter-cellular circuit become functional
- The consolidation of Wg and En expression pattern require the proper activity of both autocrine and paracrine Wg pathways
- **Dual role** played by the **Protein kinase A** (Pka) through phosphorylation of Cubitus interruptus, effector of Hh Pathway
- Important roles of SIp and Nkd during the transition from pair-rule to segment polarity expression patterns
- Novel insights in the roles of the various feedback circuits, in particular positive circuits, at the basis of differentiation decisions
- Consistency between the results of the **simulation of altered expression** of segment polarity genes with published data

Prospects

- Coupling between the gap, pair-rule and segment polarity modules
 - → towards a model of the whole segmentation hierarchy
- Modelling of control of the formation of the anterior-posterior boundary in wing imaginal disks
- → comparative analysis of segment polarity network variants
- Modelling of the molecular network controlling embryonic cell cycle
 analysis of the coupling between cell cycle and cell differentiation
- Comparative and evolutionary analysis of homologous regulatory networks (graph topology, qualitative dynamics, redundancy)

Ongoing methodological developments A Naldi, F Lopez, C Chaouiya

- Improved model definition (logical rules, OMDDs)
- Automated feedback circuit analysis
- Attractor identification (constraint programming, OMDDs)
- Model checking (temporal logics + model checkers)
- Translation into **Petri net** formalism (quantitative extensions)
- Support of various formats for models/simulations:
 GINML (XML), SVG, INA & PNML (Petri nets), SBML, Prolog, NuSMV...
- Qualitative regulatory interaction inference

Main recent publications

- Chaouiya C, Remy E, Mossé B, Thieffry D (2004). LNCIS 294: 119-126.
- Fauré A, Naldi A, Chaouiya C, Thieffry D (2006). *Bioinformatics* **22**: e124-31.
- Gonzalez A, Chaouiya C, Thieffry D (2006). Genetics 174: 1625-34.
- Gonzalez A, Naldi A, Sánchez L, Thieffry D, Chaouiya C (2006).
 Biosystems 84: 91-100.
- Remy E, Mossé B, Chaouiya C, Thieffry D (2003). *Bioinformatics* **10** : ii172-8.
- Remy E, Ruet P, Thieffry D (2006). LNCIS 341: 263-70.
- Sánchez L, Thieffry D (2003). *J theor Biol* **224**: 517-37.
- Thieffry D, Sánchez L (2002). Ann NY Acad Sci 981: 135-153.
- Thieffry D, Sánchez L (2003). Curr Op Genet Dev 13: 326-30.

Synthesis of auto-regulated gene circuits

Models of the Gap Module

Rivera-Pomar & Jäckle (1996)

	gt	hb	Kr	kni
gt	-2	-1/-3	-2	0
hb	0	0	-3	-1
Kr	-3	+2	0	0
kni	0	-2	+3	0

Bodnar (1997)

	gt	hb	Kr	kni
gt	+	-		
hb	_	+	(-)	1
Kr	—	-	+	
kni		_	—	(-)

Reinitz (1996)

	gt	hb	Kr	kni
gt	0		Ι	0
hb	0	(+)	Ι	0
Kr	-	+/-	0	
kni		—	0	0

Sánchez & Thieffry (2001)

	Von Dassow <i>et al.</i> (2000)	Reinitz <i>et al.</i> (1998) Jaeger <i>et al.</i> (2004)	Sánchez et al. (2001, 2003)
Formalism	Specified set of ODEs (continuous)	Generic set of ODEs (continuous)	Logical relationships Graphs (discrete)
Methodology	Simulations Random/directed parameter space exploration	Reverse engineering and model fitting (simulated annealing)	Logical analysis simulations
Initial data	Detailed knowledge of all components + interactions	List of key actors: the four gap genes + input + output genes	List of actors + qualitative characterisation of the interactions
Emphasis	Generic properties in relations with parameters values	Extracting interactive features from the knowledge of the dynamics	Role of specific feedback structures Simulations of mutants
Insights	Core interactions Robustness with respect to parameters and initial conditions	Gap genes specify a unique set of pair-rule stripes Diffusion coefficients Dynamics of stripe border setting	Identification of the crucial feedback circuits and delineation of their roles Prediction of new mutant phenotypes
Limitations	Variation of one parameter at a time Scaling up difficult	Standardisation of regulatory terms Scaling up difficult	Less standard maths Transition towards more quantitative models?