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We present the first sketch-based modeling method for developable surfaces
with pre-designed folds, such as garments or leather products. The main
challenge we address for building folded surfaces from sketches is that sil-
houette strokes on the sketch correspond to discontinuous sets of non-planar
curves on the 3D model. We introduce a new zippering algorithm for pro-
gressively identifying silhouette edges on the model and tying them to sil-
houette strokes. Our solution ensures that the strokes are fully covered and
optimally sampled by the model. This new method, interleaved with devel-
opability optimization steps, is implemented in a multi-view sketching sys-
tem where the user can sketch the contours of internal folds in addition to
the usual silhouettes, borders and seam-lines. All strokes are interpreted as
hard constraints, while developability is only optimized. The developability
error map we provide then enables users to add local seams or darts where
needed and progressively improve their design. This makes our method ro-
bust even to coarse input, for which no fully developable solution exists.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling

General Terms: Design, Algorithms

Additional Key Words and Phrases: sketch-based modeling, developable
surfaces, folds generation, non-planar silhouettes

1. INTRODUCTION

Cloth and leather products have folds. Their style, elegance and dy-
namism are the result of careful choice of the location and size of
these folds, many of which are designed to remain permanently,
even when the product is at rest. Therefore, considering folds is
mandatory during design of garments and of other fashion acces-
sories such as boots, bags or hats.

In real life, specific skills and knowledge are required for creat-
ing a set of desired folds when prototyping a fashion product with
developable material such as cloth or leather. This is the task of pro-
fessional pattern-makers, who create the first real prototypes from
one or two sketches depicting the product. These sketches typically
represent products with non-planar silhouette curves, and include
the contours of all desired folds, as depicted in Figures 1 and 2. In
this work, we call silhouette curve the piecewise 3D curve that cor-
responds to the silhouette from some viewing direction; note that
these curves can be discontinuous and non-planar, such as the yel-

low curve in Figure 1(b) which corresponds to the left silhouette in
the front view. The goal of this work is to provide a digital system
enabling to automate the stage of generating a 3D model and a set
of 2D patterns from the usual design sketches.

Several sketch-based systems were already proposed for mod-
eling 3D garments or other developable surfaces from silhouettes
and seam lines, generally over-sketched on a 3D mannequin. 2D
patterns are then generated by flattening each surface panel. How-
ever, these systems only capture simple garments with planar sil-
houettes, i.e. silhouette curves restricted to lie in the image plane.
Recent techniques enable to progressively refine a model by over-
sketching features on either the 2D patterns or directly on the 3D
view of the garment, simulated under gravity in real-time [Umetani
et al. 2011]. This greatly improves the interactive design experi-
ence, when finalizing a product. However, none of these methods
can be used to design folded products from sketches: this is the
problem we are tackling here.

In this work, we propose the first sketch-based modeling sys-
tem for general, folded products made from developable material.
This requires facing a major challenge: points on the silhouettes
of folded products typically form sets of disconnected non-planar
curves on the 3D model, as depicted on Figure 1 (highlighted as
yellow lines). These points need to be identified in order to be
tied to the sketched silhouettes. Meanwhile, developability needs
to be optimized and pre-designed internal folds to be taken into
account. Our technical contribution is therefore three-fold: firstly,
we introduce a simple, sliding constraint paradigm for progres-
sively identifying the location of silhouette points while optimizing
for developability. Secondly, we propose a zippering algorithm en-
suring that each silhouette stroke always remains exactly covered
and optimally sampled by the model after each silhouette match-
ing step. Lastly, the method is complemented by a new formulation
for folded developable surfaces that ensures that pre-designed folds
will not be flattened out through developability optimizations.

Our solution is implemented in a multi-view sketching system.
This prototype enables us to show that complex garments with mul-
tiple folds and the associated 2D patterns can be automatically gen-
erated from standard input, e.g. from front and side views depict-
ing silhouettes, fold contours, borders and seam lines. While the
input sketches are exactly reconstructed, we only optimize devel-
opability: therefore, sketches from which exact developability can-
not be achieved are robustly handled. Furthermore, our approach
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Fig. 1. Our method infers quasi-developable surfaces from multi-view sketches with pre-designed folds. It handles non-planar silhouettes: points on the left
silhouette, highlighted by a yellow line, form a non-continuous curve of non-constant depth on the model. The system outputs a 3D model (b) and the 2D
patterns (c) enabling to manufacture a real prototype. The red part on the developability error map (c) corresponds to the tip of the boot. Photo of a real leather
boot (d), manufactured from the patterns.

provides a developability error map that enables users to progres-
sively improve their design by locally adding seams or darts in non-
developable regions. In addition to easing the modeling of plausible
virtual garments, our method can serve as a starting point for accel-
erating the design of real products, by reducing the expensive and
time-consuming trial and error loop with real material.

2. RELATED WORK

Cloth and leather products, such as those used for clothing and fash-
ion accessories, are made by sewing together flat panels of material.
Their surface is therefore quasi-developable, except in pre-distorted
regions such as at the tip of a boot where leather has been heated to
give it a rounded shape. Since pieces of flat material tend to bend
rather than stretch or compress, they lead to specific, folded shapes.
Being able to design these folds is extremely important, since they
are typically used for styling the product (see Figure 2).

2.1 Developable surfaces

Developable surfaces are the sub-class of ruled surfaces that have a
constant normal vector along each ruling. They include cylindrical,
conical and planar parts, as well as tangential surfaces generated
by tangent vectors along a 3D curve. Developable surfaces are also
characterized by their zero Gaussian curvature, which is equivalent
to having the sum of angles around each vertex equal to 2π for
meshes. Therefore, they unfold into a 2D shape with no distortion.

Direct modeling of developable surfaces has been exten-
sively studied. Possible classes of input include tensorial
patches [Pottmann and Farin 1995], 3D contour curves [Frey
2004; Rose et al. 2007], contour strips [Tang and Wang 2005],
3D positional constraints [Peternell 2004], coarse quadrilateral
meshes [Liu et al. 2006], geodesic curves [Bo and Wang 2007] or
folding and angular constraints [Solomon et al. 2012]. However,
none of these primitives allows the input of silhouette constraints.

An alternative approach for developable surface generation is to
progressively optimize developability of a 3D mesh. When the in-
put is already good, an effective solution is to minimize the angular
defect around each vertex [Wang and Tang 2004; Wang 2008; Tang
and Chen 2009]. Otherwise, the fact that the Gauss map of a de-
velopable surface is only 1D can be used as optimization criterion,
by making local vertex neighborhoods converge to the best coni-
cal approximation [Decaudin et al. 2006]. Our work builds on this
criterion, since it is well adapted to folded surfaces. We however
introduce a new, linear formulation for efficiently solving the prob-
lem. Since surfaces generated after optimization are not exactly de-

Fig. 2. Design sketches and real products.

velopable, a robust method is needed for unfolding surface panels:
in this work we rely on ABF++ [Sheffer et al. 2005], a method that
computes a conformal shear-minimizing mesh parameterization.

2.2 Modeling pipelines for cloth products

Standard digital modeling tools use physical simulation to gen-
erate 3D garments from user-specified 2D patterns [Protopsaltou
et al. 2002; Volino et al. 2005; CLO3D ]. Recent methods, which
are already spreading in the industry, speed up the design loop by
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Fig. 3. Processing pipeline: Input (a); Initialization (b,c,d); Iterative optimization (e)...(f); Results (g,h).

enabling direct interaction with both the patterns and the 3D sur-
face [Harmon et al. 2011; Umetani et al. 2011; Marvelous Designer
; Optitex ]. Garments can also be distorted and transferred to char-
acters of different morphologies [Brouet et al. 2012]. However, pro-
viding an initial set of 2D patterns for a new design still requires
expert knowledge, which is not commonplace among artists.

Sketch-based modeling inverts this design loop: it can be used
to generate a virtual garment from its contour. Current systems are
limited to sketched over a 3D mannequin model [Decaudin et al.
2006; Turquin et al. 2007; Robson et al. 2011]. 3D is either in-
ferred by propagating offset distances [Turquin et al. 2007] or by
taking local tightness into account [Robson et al. 2011], while de-
velopability can be optimized, leading to the automatic computa-
tion of 2D patterns [Decaudin et al. 2006]. The design of closed
cloth objects such as plush toys, for which using mannequins would
not be appropriate, was achieved using a progressive sketching ap-
proach, where parts are added from different view-points [Mori and
Igarashi 2007]. However, all these methods interpret silhouettes as
flat curves, lying in a plane perpendicular to the viewing direction.
Therefore, sketches representing folded surfaces such as in Figure 1
cannot be processed.

Multi-view sketching, where designers specify an object through
two or three axis-aligned sketches, was successfully used for vari-
ous classes of models [Bae et al. 2008; Schmidt et al. 2009; Rivers
et al. 2010], but never extended to developable surfaces. Our solu-
tion uses the method in [Rivers et al. 2010] as a pre-process.

2.3 Folds design

Design sketches of developable products often depict internal folds
(see Figure 2). Taking the folds into account while preserving
developabiliy has been an issue for all previous garment model-
ing techniques. A few solutions were developed for the explicit
user-control of folds, either on a 3D surface [Singh and Fiume
1998; Cutler et al. 2007] or on a sketch [Turquin et al. 2007;
Zhu et al. 2013]. These solutions however model folds as bumps,
which spoils local developability. Other approaches automatically
add plausible folds through a post-process, using procedural mod-
eling [Decaudin et al. 2006] or physically based simulation [Rose
et al. 2007], but at the price of control. Lastly, developable fold-
ing has been investigated for both sharp folds [Kilian et al. 2008]
and smooth wrinkling, with inputs either provided by videos [Popa
et al. 2009], by physical simulation [Müller and Chentanez 2010;
Rohmer et al. 2010], or via machine learning techniques [Wang
et al. 2010]. However, none of these approaches can generate folds
guaranteed to match the silhouettes on a design sketch. This is one
of the challenges we are tackling in this work.

3. THE SLIDING CONSTRAINTS PARADIGM

3.1 Problem setting

Our goal is to generate quasi-developable models, such as garments
or fashion accessories, from standard, multi-view design sketches.
These sketches typically depict front and side orthogonal projec-
tions of a model1, with an additional top view in some cases. We
are looking for a fully automatic method, which is able to compute
a 3D model which comprises the four types of features usually rep-
resented on such sketches: Border lines representing the external
boundaries of an open surface; Seam lines where individual sur-
face panels are sewn together; Fold lines depicting the contours of
a fold, a representation more popular in design sketches than the
central curve used in [Turquin et al. 2007]; and Silhouette strokes
delimiting the 2D projection of the sketched model. These features,
which can each be drawn on either one or two views, lead to differ-
ent types of constraints (see also Figure 4):

Border and seam lines correspond to either 2D (if sketched on a
single view) or 3D (if sketched on two views) positional con-
straints for the edges of surface panels.

Fold lines bring orientation constraints for the surface normals at
specific 2D (single view) or 3D (two views) positions.

Silhouette strokes generate projective constraints: along them, at
least one point of the model should project onto the silhouette,
and no other part should protrude more. The set of points on a
silhouette typically forms several disconnected curve segments
when depicted on the object (Figure 1(b)). If the object is locally
flat, this set may include 2D regions.

The surface we are looking for has to exactly meet these con-
straints while being an optimal solution in terms of developabil-
ity. Exact developablility is not among our goals: Indeed, there is
no guarantee that such a solution exists for a given set of input
sketches. Moreover, design with developable material may make
use of a few rounded parts such as at the tip of a boot, as already
mentioned. Therefore, not requesting exact developability makes
our approach robust and general. We however wish to output an
error map enabling users to improve developability, if desired, by
editing the model or by adding extra seam lines.

3.2 Handling silhouettes through sliding constraints

The specific challenge we are facing is to combine developabil-
ity enforcement with the constraints of different nature that we
just have listed. While positional and orientation constraints can
be taken into account, with some effort, within a developability op-

1In this work we are not considering perspective drawings.
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Fig. 4. Typical design sketch with feature lines such as borders, silhou-
ettes, fold and seam lines. Notice that some of the lines are visible in both
sketches (red). These lines imply 3D positional constraints in our method,
since the corresponding lines on the 3D model have to fit both views of the
sketches, see Section 3.3 . Feature lines which are only visible in one sketch
are 2D constraints, since the corresponding line on the 3D model have only
to correspond to a 2D view.

timization process, projective silhouette constraints are more diffi-
cult to handle, as they are not associated to specific model points.

Our first contribution is to introduce the concept of sliding con-
straints to model the non-planar silhouette curves: when the model
deforms towards a developable model, the sets of points lying on its
silhouettes are allowed to slide over the surface, and to change of
topology (curve segments possibly appearing, disappearing, split-
ting or merging), as it occurs to the silhouette of a real surface when
it deforms. To enable this, we optimize developability interleaved
with silhouette matching progressively rather than in a single step.
This leads us to the processing pipeline described next.

3.3 Processing pipeline

The sliding constraints paradigm we just described requires solving
the problem through an iterative optimization process, also summa-
rized in Figure 3:

(1) Initialization: Generate a draft 3D mesh with a feature-aware
tessellation from the multi-view sketches.

(2) Optimization loop: While developability can be improved:
(a) Optimize Developability
(b) Match Silhouettes

At the end of this loop, the 3D model together with the correspond-
ing set of 2D patterns and a developability error map are generated.

Initialization: We first generate a visual hull from silhouette
and border constraints using [Rivers et al. 2010]. A set of pla-
nar faces are computed by extruding silhouettes along orthogo-
nal planes (Figure 3(b)). The volume is then meshed according to
the internal features (seams and folds), to allow subsequent accu-
rate feature reconstruction: features drawn on a single sketch are
projected onto the appropriate faces of the visual hull while those
drawn on two sketches are first reconstructed as a 3D curve. This
is done as follows: Without loss of generality, let (Vi) be the list
of vertices along a line drawn in a front view and (Ej) be the list
of edges along the same line in a side view. Our goal is to com-
pute the best mapping from the (Vi) to the (Ej), where mapping a
vertex to an edge means that the vertex lies along that edge in the
side view (which gives it the missing depth information). Note that
each mapping is constrained by the former mapping choices for

vertices along the line, and by the height of the interval covered by
the selected edge. We define the best mapping as the one that min-
imizes the total length of the resulting 3D curve (see Figure 5 as a
result). This length is computed by splitting the edges in the sec-
ond view according to the associated vertices from the first view,
and by using 3D coordinates of all vertices (the x coordinate of the
vertices in the side view being inferred by interpolating those of
their surrounding vertices from the front view). We solve this con-
strained mapping problem using a standard dynamic programming
algorithm [Cormen et al. 2001].

The vertices of the reconstructed, 3D feature curves are then pro-
jected back to the visual hull for feature-aware meshing. Results are
depicted in Figure 5.

The hull is tessellated using a 2D constrained Delaunay trian-
gulation of the projection of the hull faces onto the viewing plane,
where all feature curves are used as constraints. The tessellated hull
therefore includes all the necessary edges for exactly matching the
sketches (Figure 3(c)).

The tessellated hull is finally smoothed out into a draft model
while maintaining feature matching with the sketches: a vertex
of a feature curve drawn on a single sketch is allowed to slide
along a straight line, else it is assigned to its reconstructed 3D
position. In our implementation, we use the simple smoothing
method from [Taubin 1995] and we do not preserve silhouettes
while smoothing, since they will be restored in the optimization
loop. See Figure 3(d).

Fig. 5. Without (left) and with (right) 3D reconstruction of seams based on
minimal length. Left: When a seam line is visible in 2 sketched views, as it
is the case here, a simple concatenation leads to an elongated angular curve
on the model (see curve pointed by arrow). Right: The 3D reconstruction in
the initializtion step reduces the curve length while still matching with the
sketches.

Optimization loop and challenges: Starting from the draft
model, step 2 of the processing pipeline optimizes developabil-
ity while ensuring that the model exactly fits all silhouettes in
the multi-view sketches. It therefore alternates developability op-
timization with silhouette constraints enforcement. As in previous
work, silhouette matching makes the model locally inflate or de-
flate. However two problems remain to be solved:

—Since we make neither symmetry nor flat silhouette assumptions
ensuring that silhouettes edges are fully covered and never hid-
den by other parts of the model is rather intricate. Our solution
is described in Section 4.

—Moreover, in addition to 2D and 3D positional constraints due
to border and seam lines, pre-designed folds have to be modeled
and maintained throughout the process. Our solution is presented
in Section 5.

Convergence: We need a global developability measure to de-
cide when to exit step 2. Let the weighted angular defect D(V ) be
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the absolute value of the sum of face angles around the vertex V ,
minus 360 degrees, and divided by the area of the 1-ring around V .
Our global measure is the percentage of mesh vertices for which
D(V ) < 5◦/m2. In addition to being a local optimum for this
measure, the mesh we return meets all the other constraints. We
also return the 2D patterns computed by unfolding surface panels
using ABF++ [Sheffer et al. 2005] and a color map of the weighted
angular defects at each vertex.

Since the sliding constraints method we are using interleaves
developability optimization and silhouette matching steps, conver-
gence can only be reached if the silhouette matching does not spoil
the current level of developability. We addressed this issue by de-
veloping a silhouette matching method (Sect. 4) that best preserves
all normals. Then, if the Gauss map of the surface is close to being
1D (i.e. the surface is close to being developable), it tends to remain
so. In practice, convergence was reached in less than 10 iterations
for all our examples.

4. NON-PLANAR SILHOUETTE MATCHING

We are seeking an efficient method to be used at each iteration of
step 2, to ensure that silhouette strokes are fully covered by projec-
tions of model points and never hidden by other parts of the model.
A simple idea would be to select for each silhouette the set of mesh
vertices that protrude the most from the associated viewing direc-
tion, and pull them to the closest silhouette point. However, when it
is used in a general case (non-planar silhouettes and no local sym-
metry assumption guaranteeing that silhouette points form a con-
tinuous curve), this method tends to select isolated mesh vertices.
Pulling the latter typically creates spiky shapes and fails guarantee-
ing a full coverage of the silhouette, see Figure 6-left.

Standard silhouette detection algorithms will select a subset of
edges, called silhouette edges, for which one adjacent polygon is
front-facing and one is back-facing [Markosian et al. 1997]. Un-
fortunately, one observes [Corrêa et al. 1998; Hertzmann and Zorin
2000] that in mesh regions similar to cusps or where many faces are
nearly edge-on, several silhouette edges can accumulate and thus
produce a nasty pattern with intersections when projected onto the
viewing plane. Furthermore, a silhouette edge computed using this
definition it not necessarily the most protruding edge and some of
them may not be visible from the view point of interest. Pulling
these edges onto the silhouette stroke would therefore lead to too
large mesh deformations.

Hertzmann and Zorin [2000] approximate smooth surface sil-
houettes defined as the zero-set of the non-linear function
f(p) =< n(p), p − c >, where n is the surface normal and c
the view point. By assuming that f varies linearly along the mesh
edges, the on-edge silhouette points are computed using linear in-
terpolation of f and then connected together. The fact, that the
edges of the computed silhouette curve do not belong to mesh edges
makes them not suited to be integrated as hard constraints into our
developability preserving fitting procedure (as described in Section
4.2).

Silhouette matching combined with Laplacian mesh editing as
proposed by Nealen et al. [2005] also does not fit our needs for the
following two reasons. Firstly, silhouette matching is herein only a
design handle and not a hard constraint. User-prescribed target sil-
houettes are expressed as soft constraints in a least-squares fitting
process, so they are not exactly matched. This is fine for this ap-
plication, where the detail-preserving nature of Laplacian editing
should not be lost. In contrast, our method aims at having silhou-
ette strokes exactly matched. Secondly, the silhouette edges on our
model may be arbitrarily segmented (see Figure 8) in which case

Fig. 6. Constraining isolated vertices to match the silhouette may lead to
incomplete silhouettes (left) while our edge based approach ensures perfect
silhouette match.

the method by Nealen et al. is not applicable. Handling segmented
model silhouettes is a desired property in our case, since it pro-
vides our iterative loop with the necessary flexibility to converge to
a developable surface with predefined folds. We would not be able
to converge to the boots in Figure 1(b) using continuous silhouette
curves on the model as assumed in previous work.

We now develop a novel solution to select a subset of mesh edges
based on the three following requirements: Firstly, our model being
a triangle mesh, the sets of points on a silhouette can be represented,
without loss of generality, as a subset of the mesh edges (a triangle
will be entirely on the silhouette if two of its edges are tagged as
silhouette edges). Therefore we select a set of edges that we call
s-edges, to be tied to silhouette strokes rather than mesh vertices,
see Figure 6.

Secondly, to ensure that a silhouette stroke from the sketch is en-
tirely covered and well sampled by the projection of s-edges, we
exploit the way the draft mesh was built: For each segment of a
2D silhouette stroke, we select s-edges among those built from this
specific segment when the tessellated hull was generated. More-
over, each selected edge is assigned to its original projection on
the silhouette, leading to an exact reconstruction of the silhouette
stroke and ensuring that model points optimally sample the silhou-
ette.

Lastly, silhouettes should not be hidden by other parts of the
model. To achieve this, in addition to selecting the edges that pro-
trude most from the relevant viewing direction, we generate a mesh
deformation that best preserves normals. The selected edges then
tend to remain the most protruding ones after deformation.

4.1 Selecting silhouette edges through zippering

For each silhouette stroke, we use a new zippering algorithm to
select s-edges such that all the segments of the stroke are covered:
the method progressively selects the most protruding edges of the
current model while it marches along the silhouette stroke.

Without loss of generality, let the silhouette stroke lie in the
(x, z)-plane, let the y-axis be the relevant viewing direction, and
let S be a segment of the stroke, see Figure 7(a). As stated in Sec-
tion 3.3, S was used to generate a planar face on the visual hull.
This hull was then triangulated according to seam and fold lines.
Let H(S) be the triangulation of the planar hull panel correspond-
ing to segment S (Figure 7(b)) and M(S) be the current corre-
sponding mesh panel before silhouette marching. Since the planar
hull triangulation H(S) is in 1-to-1 correspondence with the de-
formed mesh panel M(S), one can consider H(S) being the pa-
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Fig. 7. Protruding edges composing the silhouette: (a) Silhouette with se-
lected silhouette line S and marching parameter p. (b) Silhouette hull trian-
gulation H with marching line lp. As the marching line advances, we select
the most protruding edge among those intersecting lp. (c) Current mesh M

with selected edge in red.

rameter domain of M(S), where each edge e ∈ H(S) uniquely
corresponds to an edge em∈M(S).

For each segment S the zippering edge-selection algorithm
works in either the x- or z-direction, depending on in which di-
rection the segment spans the most. Assume that the z-direction is
selected as in Figure 7(a) and that S spans the interval [zmin, zmax].
The algorithm initiates a marching line lp parallel to the y-axis by
setting the marching parameter p := zmin. p corresponds to the
starting point of silhouette segment S and defines a rim line on the
silhouette hull, Figure 7(b). As p is marching from zmin to zmax,
the marching line lp slides along the hull H(S). For each specified
parameter p, we select, among all edges in H(S) crossing lp, the
most protruding edge e as follows:

ē = max
e∈H(S)

p∈[z1(e),z2(e)[

(
sign(em) · dist(e, em)

)
, (1)

where z1, z2 ∈ [zmin, zmax] with z1 ≤ z2 are z-coordinates of ver-
tices of e, dist(e, em) is the distance between the edge midpoints
and sign(em) is positive in case the edge em is lying outside the

silhouette hull, negative otherwise. p is then updated to p = z2(ē),
and the algorithm iterates the edge selection (1) until p ≥ zmax.

The output of the zippering algorithm is a list of edges {e} on
the tessellated hull and their counterparts {em} on the actual mesh.
The edges of the hull exhibit small overlaps in the (x, z)-plane, but
have different y-depths. These overlaps will guarantee a complete
covering of the silhouette. It may happen that during edge selection
short edges are ”hidden” by longer edges. This is however not a
problem in practice: indeed, if the non-selected shorter edge was
still protruding after this step, it would be selected at the next iter-
ation. Note that if the two edges are not too far away, the selection
of the larger edge followed by the developability optimization step
may already solve the problem, since the displacement of the se-
lected edge propagates in a neighborhood.

Note that the method seamlessly handles edge selection when the
model is inside, versus outside the silhouette. Figure 8 shows the set
of s-edges {em} on the mesh at different steps of the optimization
loop.

Fig. 8. Sliding constraints: during optimization (step 2), the set of edges
tied to the side-view silhouette (black) progressively slides over the surface,
depending on its deformation, so that the silhouette stroke is always exactly
reconstructed by the edges that protrude the most.

4.2 Silhouette matching

Once the set {em} of the most protuding mesh edges has been
selected, we deform the mesh in order to match the silhouette.
The idea is to enforce silhouette constraints by moving the edges
{em} to adapted target positions while maintaining all 2D and
3D positional constraints and best preserving all triangle normals,
see Figure 9 for a result. This is done by adapting the As-2D-as-
possible deformation method of [Brouet et al. 2012], as follows:

As-2D-as possible deformation: This method sets mesh triangles
to target orientations in a single linear step. Triangles are allowed to
change shape and size to maintain connectivity. Let (p1,p2,p3) be
the vertices of triangle t and p4 defined by offsetting p1 in the nor-
mal direction. The 3×3-matrix P t = (p4−p1,p4−p2,p4−p3)
representing the local 3D frame of t is used to define the deforma-
tion transfer from the source triangle to the unknown target triangle
(p̃1, p̃2, p̃3) as P̃ t(P t)−1. P̃ t is the frame of t after deformation.
The deformation is expressed as the least-squares minimization of:∑

t

‖P̃ t(P t)−1 − T t‖2F , (2)

where ‖M‖F = (
∑

i

∑
j |mij |2)1/2 is the Frobenius matrix norm

and T t the known gradient which rotates triangle t into a target
orientation. In our case, we want to preserve orientation, so T t is
set to the identity matrix. Two types of constraints are then added
when minimizing (2).
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Feature line constraints: We take benefits of the feature aware
tessellation used in step 1 of the processing pipeline where a
set of mesh edges is pre-associated with feature lines (seam or
fold). When a feature was drawn in two views, it results in a
set of 3D positional constraints. So, the corresponding x, y and
z-coordinates are set to these position values and are removed
from the set of unknowns of equation (2). When it was drawn in a
single sketch (e.g. the (x, z)-plane), the sketched feature imposes
a set of 2D constraints. Again, we simply set fixed values for the
coordinates specified on the sketch for these vertices, remove these
coordinates from the unknowns of equation (2) and only allow the
depth of the vertices to change.

Silhouette constraints: Let p1,p2 be the vertices of a selected
s-edge {em} and v1,v2 be vertices of its counterpart {e} on the
tessellated hull H(S). To ensure an exact reconstruction of the
silhouette stroke, we set the x and z coordinates of {em} back
to those of e: p̄xi = vxi and p̄zi = vzi and remove the two pre-set
coordinates per vertex of each s-edge from the unknowns before
minimizing (2).

Fig. 9. Silhouette matching: Projection of most protruding edges to the
silhouette and mesh deformation best preserving normals. The silhouettes
strokes of the side-view are perfectly matched, as well as the 3D feature
line constraints (yellow). The mesh edges marked in black on the bootleg
are the selected edges tied to the silhouette stroke of the front view.

Least square minimization: Following the same steps than Sum-
ner and Popovic [2004], the minimum of expression (2) can be
found by solving a linear system with respect to the unknowns p̃i.
The best solution is computed as a standard least square minimiza-
tion using the normal equations of the associated linear system.
The resulting (p̃1, p̃2, p̃3) vertices define the new geometry of the
mesh. As the linear system is separable in the (x, y, z)-coordinates,
we actually solve three smaller systems in each coordinate. There-
fore, for a mesh of V vertices, T triangles and c hard constraints for
a given coordinate, we solve three linear systems of size V +T −c.
Note. that c may be different for each coordinate. The solution can
be computed efficiently since our meshes are quite coarse. Note
that the system could be further reduced using the formulation in
[Botsch and Sorkine 2008].

5. HANDLING INTERNAL, PRE-DESIGNED FOLDS

The method we have described so far builds a surface that exactly
matches the silhouettes and seam-lines in multi-view sketches. The
last challenge we need to solve is to handle the pre-designed folds
also depicted on the input sketches and to optimize developability
without flattening these folds. Our solutions for representing and
maintaining folds are discussed below. In particular, we propose a
new, fold-preserving method for optimizing developability.

5.1 Folds from sketched contours

A first idea could be to model folds as internal silhouettes, enabling
us to re-use the matching process we just described. However, look-
ing at many design sketches such as those in Figures 1 and 2, we
noted that most of sketched folds are not so extreme. They rather
correspond to a region where the surface is either bumping inwards
or outwards. Moreover, they are generally represented by their con-
tours rather than by their center-line. Based on this observation, we
follow the idea from [Popa et al. 2009] to use an orientation con-
straint for modeling the folds, but we propose a simpler geodesic
diffusion approach and actually generate the folds by fitting pre-
scribed target orientations for the mesh triangles. In contrast with
[Popa et al. 2009], our formulation avoids solving several linear
systems over the whole mesh. It is thus much more efficient and
still sufficient for generating plausible initial fold shapes. The ori-
entation constraints we use consist in restricting the normal vectors
of the mesh triangles along a fold contour to form a fixed angle
with the viewing direction. [Popa et al. 2009] found out empiri-
cally that the range of 30◦-60◦ best characterizes folds from wide
to narrow size. We use 60◦ in our implementation in order to get
well pronounced folds.

To get a better starting point for optimization, we take folds into
account at the end of step 1 of the processing pipe-line (see Sec-
tion 3.3). Then, they are maintained and their shape is made more
developable within the optimization loop of step 2.

5.2 Initializing folds

An offset distance λ is defined to control the region of influence
(ROI) of the deformation due to each fold line. In practice, λ is
automatically set from material thickness value preselected by the
user, as was done in [Rohmer et al. 2010]. Fold contours are re-
constructed by the tessellated mesh as are the other feature lines
(see red curves in Figure 3(c)). To ensure that the normal vectors
along them exhibit the pre-set rotation angle, the triangles along
the curve are then rotated around the edge that belongs to the fold
contour. To preserve surface smoothness, we first diffuse the orien-
tation constraints along fold contours.

The rotation induced by a fold-curve segment s on a mesh tri-
angle t is pre-set to the rotation around s that brings a 60 degrees
angle with the viewing direction. The magnitude of this rotation is
then scaled, depending on the geodesic distance from s to t, by a
weight ωs

t ∈ [0, 1] that falls down to zero at the border of the ROI.
Let ns

t be the triangle normal after this rotation. If t is within the
ROI of several fold segments (belonging to the same or to differ-
ent fold lines), we compute its target normal nt using quaternion
interpolation of ns

t . Finally, mesh triangles are re-oriented to the
resulting target orientations while maintaining mesh connectivity
(see Figure 3(d)), using the As-2D-as-possible deformation formu-
lation of Equation (2) with the gradient matrix T t set to the rota-
tion matrix with axis and angle given resp. by (p4 −p1)×nt and
arccos((p4−p1)·nt). Preserving 2D and 3D positional constraints
while minimizing (2) just requires removing a few unknowns, as
explained in Section 4.

5.3 Folds-preserving developability optimization

The silhouette matching step of the optimization loop will natu-
rally preserve folds, since it best preserves all normals. The same
requirement of folds preservation holds for the developability opti-
mization step described in this section. However, the method has to
be chosen with care: using standard local surface flattening meth-
ods would indeed improve developability, but at the price of loosing
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folds. Further requirements for this step are the efficiency (since
it will be used within an iterative process) and the ability to pre-
serve positional constraints. We therefore developed an appropriate
method, described next.

Since we are dealing with surfaces possessing folds, which lo-
cally behave like cones or cylinders, we propose to improve devel-
opability while preserving the existing folds by locally fitting the
best approximating cones. We found the most appropriate devel-
opability measure in [Julius et al. 2005; Decaudin et al. 2006]. It is
a metric that builds on a common property of cones, cylinders and
planar patches that is: the surface normal vector n has a constant
angle Θ with an axis A. The local fitting error derived from this
measure for a mesh triangle t is thus:

(nt ·A− cos Θ)2. (3)

[Decaudin et al. 2006] propose a complex three-step algorithm to
minimize this error. The three steps are a non-linear optimization
process to find the best approximating cone, followed by two dis-
tinct fitting steps. Based on the developabiity error measure (Equa-
tion (3)), we propose a different algorithm which meets all our re-
quirements but uses only two linear steps. It improves developabil-
ity, preserves the existing folds and simultaneously satisfies all the
extra positional and normal constraints.
The first step of our method is to compute the best fitting cone
(defined by A and Θ) to each triangle’s neighborhood in order to
obtain its target normal vector. Let us define Θ by:

cos Θ := n̂ ·A, (4)

where n̂ is the average normal vector in the neighborhood N(t) of
a triangle t. We first estimate the axis A by solving

arg min
A

∑
j∈N(t)

((nj − n̂) ·A)2 subject to ‖A‖ = 1, (5)

where the error term ((nj − n̂) ·A) is obtained by replacing (4)
into (3). Problem (5) is known as a total least squares minimiza-
tion. The solution A is the vector corresponding to the smallest
singular value (in absolute value) of the matrix composed of the
vectors nj − n̂, the constraint ‖A‖ = 1 is automatically satisfied.
We then compute Θ from (4). In our implementation we choose
N as the 1-neighborhood of a triangle’s edges and vertices. Even
though a larger N may improve the approximation, in our setting
the quality of the approximation will however be improved anyway
when this step is repeated in the whole optimization loop. The tar-
get normal vector n for each mesh triangle is computed by rotating
the actual triangle normal nt around the vector nt ×A such that
(n ·A − cos Θ = 0) after rotation. However, we leave the target
normal unchanged for the triangles adjacent to a fold line, since it
was already pre-set to account for the fold orientation with respect
to the viewing direction.

In a second step, the mesh deformation best approximating all
target normals is computed using our extension (Sect. 5.2) of the
As-2D-as-possible approach (2), enabling us to take the 2D and
3D positioning of features on the sketches into account as well. A
further benefit of this new approach for optimizing developability
lies in its efficiency, since only a single linear system needs to be
solved.

Note that this method alone is not able to remove isolated sin-
gularities such as the tip of a cone: Being based on convergence to
the closest local conical approximation, it would leave such local
conical features unchanged. To favor smooth developable surfaces,
we add a local developability pass at the end of this process. If the
angular defect around a vertex is larger than a threshold, we apply

one step of the local flattening operation in [Wang and Tang 2004]:
The vertex is re-positioned in the normal direction to minimize the
local angular defect.

Fig. 10. Progressive design: sequence of sketches and resulting models
with patterns. Top: Initial sketch. Middle: Folds-lines added. The error-map
on the patterns still indicates a result being far from being developable.
Bottom: Seams are added on the top view to improve developablity. Note,
that in the first two cases the pattern is composed of 2 parts, one of which
has a high developability error. On the bottom example, seam lines were
added on the top view, resulting into 3 developable parts.

6. RESULTS AND DISCUSSION

Sketching interface: In our implementation, the user selects a dif-
ferent pen to draw either seam and border lines, external silhouettes
or fold contours (yellow, black and red lines respectively shown in
Figure 3(a) and Figures 11-14-left). Pre-existing fashion sketches
can be displayed as a background image and used as a guide during
this input step. A fold being represented by contour lines, its in-
ward or outward nature is set from the sketching direction and can
then be switched manually. When a feature line (seam, border or
fold) is sketched in two views, our interface displays guidelines and
provides snapping mechanisms to assist the designer in defining a
coherent second view. The user can stop sketching at any point and
run the method: if the user starts from coarse sketches with missing
seam lines, the current surface panels will be far from developable,
but the 3D model will already give a good idea of the current model.
The error map representing local angular defects (see Section 3.3)
enables the user to progressively improve the design, as shown in
Figure 10.

Examples: Figures 1 and 10-17 show a number of results from our
method. Several of them where inspired from pre-existing design
sketches such as those of Figure 2, enabling us to validate the use
of our method for arbitrary models. The examples in Figures 10 and
14 were actually created by a cloth designer. In all our examples the
emphasis is on the generation of non-planar silhouettes and pre-
designed folds while producing developable surfaces.

The phrygian cap shown in Figure 13 validates our sliding con-
straints paradigm in an extreme case. This particular highly non-
planar silhouette is produced progressively by our system in con-
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Fig. 11. Joker hat sketched with our system and comparison with [Rivers et al. 2010]’s in the middle (gray mesh).

Fig. 12. Shirt and Tunic sketched with our system.

Fig. 13. Highly non-planar silhouettes are used to design this Phrygian
cap.

cordance to the three input sketches without any user-interaction.
The phygian cap and the hat (Figure 10) are the only models for
which three sketches, including a top view, were necessary to fully
specify the shape.

Concerning the sliding silhouette paradigm, one can observe in
practice that silhouette curves tend to converge from sets of dis-
joint edges to several pieces of contiguous silhouette curves. This
is due to the smoothing effect of developability optimization steps:
We converge to a surface that meets all constraints, embeds folds
and is nearly developable. Therefore, the initially rough surface be-
comes smoother and smoother, leading to a more continuous set
of silhouette s-edges. This is a pleasant side effect that we do not
control explicitly.

For the boot, we show both the designer’s sketch (Figure 1(a))
and the input of our system (Figure 3(a)). The boot illustrates a
leather object, for which folds are typically part of design. The
color-coded 2D patterns, computed with [Sheffer et al. 2005], val-
idate the good level of developability of the surface we generated,
except at the tip of the boot (red region on the pattern). We further

validated our approach by sewing an actual leather boot from the
patterns (Figure 1(d)).

The joker hat (Figure 11) validates our method for sketches with
complex, curved silhouettes. It fits well to the sketches and brings a
very different solution from the one computed from the multi-view
sketching method in [Rivers et al. 2010], shown for comparison:
While the grey mesh in the middle-left (Rivers et al’s method) does
match the input sketches its lower part is a generalized cylinder of
varying thickness (which makes it look somewhat as a chess piece).
The deep concavities at the top of this lower part are regions with
non-zero Gaussian curvature, since curvatures in the vertical and
horizontal directions are both obviously non-zero. This makes the
surface non-developable. This is corrected by our solution shown
at the right. We even achieved a very good level of developability
in this case, as shown by the error map displayed on the patterns,
even though surface panels have non-trivial geometry. Note also the
smoother and flatter shapes we get for the three upper parts.

The shirt, the tunic and the coat (Figure 12, 14) give further ex-
amples of mannequin-free garment design. Note that we set no
symmetry constraint on the patterns of these models, leaving our
designers free to sketch whatever they imagined. All examples con-
verged in 3 to 7 iterations. See table 1 for full statistics. The leather
coat is shown in another posture, computed using physically-based
simulation under collision and gravity forces, in Figure 17. We also
included a full animation of the tunic in the associated video, to
validate the fact that the models we output are ready for animation.
Note however that the meshes we output should be refined before
simulation if thinned cloth material was to be modeled.

Finally, we would like to stress that our ”sketching folds” method
is particularly well suited (although not exclusively) to design of
products with pre-designed folds. Our last two examples of a doc-
tor bag and a smaller purse in Figure 15 obviously belong to this
class of products. All the folds drawn by the designer in the front
and side view sketches are intended to remain permanently. They
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Fig. 14. ShortCoat designed with our system.

clearly appear faithful to the sketch in the resulting 3D model. Note
that silhouette curves are totally non-planar for these two models
(as highlighted by yellow curves in Figure 16), preventing them to
be created using former sketch-based modeling systems.

Limitations of the method: Although being able to build quasi-
developable surfaces matching multi-view sketches is a useful
achievement, we noticed several limitations of our method.

Firstly, there may be a lack of user-control when complex shapes
are reconstructed from only a couple of sketches. The joker hat
(Figure 11) gives a good illustration of the problem. Although the
top of the hat has three parts, our designer was only enabled to
sketch a single side-view silhouette: at each step of the iterative op-
timization loop, our method ensures that one part of the hat matches
each point of this silhouette. The other parts are only constrained
to be somewhere inside. Enabling the user to divide the shape into
several parts, and sketch partial silhouettes for each of them, would
be a useful extension when more control is desired. Another part of
our method where control may be lacking concerns pre-designed
folds: Our orientation-based method enabled us to model simple
folds, which are then improved thanks to developability optimiza-
tion. However, providing a better control of fold shapes at the ini-
tialization stage would be useful. Using the implicit model for geo-
metrical folds in [Rohmer et al. 2010] could be a good choice, since
it allows to model merging folds as well as isolated ones.

Secondly, the shape we design can currently be set to be sym-
metric by using symmetric input sketches. However, in the case of
garments, being able to enforce symmetry on the pattern rather than
on the 3D model could be even more useful. This is still an open
problem.

Lastly, the generated surface is not guaranteed being free of self-
intersection. In practice, we only obtained a self-intersection in one
of our examples, namely a former version of the shirt of Figure 12.
Removing such intersection currently needs to be done as a post-
process using a collision processing method.

7. CONCLUSION

We have presented the first method enabling to generate smooth
developable surfaces with folds, such as cloth or leather products,
from multi-view design sketches. The main contribution is the fact
we seamlessly handle non-planar silhouettes. In particular, we use
sliding constraints to progressively match silhouettes while opti-
mizing developability. We introduce a zippering algorithm enabling

Fig. 15. Top: Doctor bag and leather purse designed with our system. Mid-
dle: designer’s sketches exhibiting design folds which are indended to re-
main permanently on the product and the sketches given as input to our
system. Bottom: the patterns we output. Note that we did not use symmetry
for these examples: therefore, neither the input sketches nor the resulting
shapes or patterns are fully symmetric.

Model #V t1 % it t2 % dev. L2 L∞
final stretch stretch

boot 1665 4.1 3 3.4 94.5 1.022 1.876
Joker 2297 2.1 7 4.2 96.8 1.023 1.223
Shirt 1978 3.9 5 4.5 95.9 1.021 1.526
Tunic 1811 3.2 5 4.6 95.8 1.010 3.203
Phrygian 1388 1.8 5 3.4 97.2 1.015 1.326
Hat 1904 2.6 4 3.7 95.3 1.010 1.204
Coat 2338 4.9 6 4.8 95.6 1.040 2.204

Table 1: Result statistics. Number of vertices #V , preprocessing time in seconds t1,
number of iterations (step 2) #it, time per iteration in seconds t2, percentage of vertices
with angular defect less than 5◦/m2, L2 and L∞-stretch.

selected s-edges to exactly match silhouette strokes. And we pro-
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Fig. 16. Left: Input sketch with one silhouette highlighted in yellow.
Right: Doctor bag with the corresponding non-planar silhouettes curves
highlighted in yellow.

pose an adaptation of the As-2D-as-possible method for optimizing
developability while preserving pre-designed folds.

Designing developable models from a set of two or three axial
views is a current practice for designers of leather or cloth products.
Our method, which has already been validated and used by a few of
them, is therefore a promising technique for industrial applications:
combined with recent interactive post-editing techniques [Umetani
et al. 2011], it would enable designers to quickly convert a concep-
tual idea into a first 3D model, later fully simulated and improved.

In terms of sketch-based modeling challenges in Computer
Graphics, a very interesting related problem, to study next, would
be the generation of developable models from a single, perspective
sketch, such as the hat in Figure 2. The fact that we are able to imag-
ine a 3D shape from this type of sketch can give some hope. Such
perspective sketches, possibly drawn with a photo as background
image and with no correspondence to maintain between several
views, could be an easier 3D modeling interface for beginners.

Fig. 17. Mannequin in a different posture, dressed with the hat (Figure 10),
the boots (Figure 1) and coat (Figure 14) designed with our system. This
simulation frame (shown in 4 different view) was computed using a com-
mercial physically-based simulation package. Here pre-designed folds for
the coat (corresponding to more leather material and to larger 2D patterns)
seamlessly combine with those due to this specific posture under gravity.
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