Second year internship report

Amaury Negre

October 7, 2004

%I INRIA

RHONE-ALPES

This internship was done from 05/07/2004 to 24/09/2004 at:

INRIA Rhdne-Alpes

ZIRST

655 Avenue de 1’Europe
Montbonnot

38334 Saint Ismier cedex
France

My objective was to evaluate the Pekee Robot and to install linux on this
platform. My project leaders were Roger Pissard-Gibollet (research engi-
neer), Gérard Baille (research engineer) and Daniel Simon (research scien-
tists).

Contents

1 INRIA Rhone-Alpes Research Unit
1.1 Theresearchunit
1.2 The SED Team
1.3 Work context

2 Internship goal
2.1 Internship context : the Pekee Platform
2.2 Internship subjecto

3 Project realization
3.1 Linux installation L.
3.1.1 Compile Toolchain
3.1.2 Linux kernel
3.1.3 Linux utilities and Busybox
3.2 Drivers programming
321 OPPdriver
3.2.2 Cameradriver
3.3 Application programs
3.3.1 Tracking program
3.3.2 OPP and Video servers
3.3.3 Remote control program

4 Conclusion

Word of gratitude

I would like to thank all the people who helped me during that intern-
ship, especially my project leaders Roger Pissard-Gibollet, Gérard Baille and
Daniel Simon who trusted me, David Robert who helped me when I had dif-
ficulties, Soraya Arias and Jean-Francois Cuniberto who were always ready
to help me, and Romain Lacroix, another student who helped me while I was
installing linux.

Chapter 1

INRIA Rhone-Alpes Research
Unit

1.1 The research unit

INRIA is a public establishment for research in scientific and technologic
domain. It leads advanced research in computer science, telecommunication,
multimedia, control, robotics, and signal processing.

Figure 1.1: INRIA Rhone-Alpes building

INRIA is under the control of both the Ministry of Research and the Min-
istry of Industry. The Rhone-Alpes research unit created in 1992 employs
more than 400 people. INRIA Rhone-Alpes works with other research centers
(CNRS, IMAG, UJF,...) in four main domains:

e Computer system and network
e Computer aided conception and creation
e Perception, simulation and action

e Modeling for complex phenomena

INRIA creates also companies (start-ups) as direct application of research
subject. There are several companies which were created by the INRIA, for
example Robosoft and Blue Eye Video.

1.2 The SED Team

In order to make experiments and to test their work, researchers need
platforms (car-like robots, bi-steerable robots, biped robots,...) especially
in robotics. All platforms that are needed by the INRIA Rhone-Alpes re-
searchers and engineers are provided by the “SED” (Support Expérimentations
& Développement logiciel). This is a team of about 10 engineers and tech-
nicians, which conceive, adapt and maintain all the hardware part of the
robots.

1.3 Work context

I worked in to that team for my internship, although my work was intended
to the team called “POP-ART”. This team searches to solve the problem of
the safe design of real-time control systems, and would like to use the robot
“Pekee” to experiment their applications. I installed linux in this robot and
wrote applications to use all its functions.

Chapter 2

Internship goal

2.1 Internship context : the Pekee Platform

In order to complete experimentations, the SED team acquired the Pe-
kee Mobile Robot Platform. This is an open robotic development toolkit
produced by Wany Robotics. This platform, intended for researchers, ed-
ucators, and students in technology, provides features useful in the field of
obstacle avoidance, embedded video, network, signal analysis, and artificial
intelligence.

The main features of this platform are :

e Embedded computer, included a color video camera, (720 x 560 pixels)
(cf Figure 2.3)

e Wi-Fi 802.11b and RJ45 Ethernet connections
e USB, keyboard, and mouse ports

e 2 differential drive DC motors with incremental encoders and integrated
suspension

e Mitsubishi M16C family micro-controller running Wany robot control
software

e Many built-in sensors (15 infrared distance measurement sensors, 2
gyrometers, 2 temperature sensors, 1 shock sensor, 1 light sensor)

1 serial port

4 x 12C connectors

Figure 2.1: Pekee 1

e Buzzer

2 x 12 volt rechargeable batteries (NiMH)

Integrated intelligent charger

Wany Open Parallel Platform™(OPP) bus (Cf Figure 2.3).

This platform seems to be a good toolkit to complete experimentations
in the robotic field, but it doesn’t include a linux support; all the software
is only developed for Windows®) which is an issue since the POP-ART’s
scientists work mainly with unix systems. Moreover, Windows(®) offers very
low real-time performances.

2.2 Internship subject

The objective of my intership was at first to understand and to evaluate the
Pekee’s capabilities, and then, it was to install a linux system in this platform
and to develop drivers and applications to use a maximum of functionalities,
like motors and sensors control and video capture. I also tried to work
with linux rtai (Realtime Application Interface) in order to build real-time
applications.

Figure 2.2: Pekee Cartridge

Figure 2.3: Pekee Open

Chapter 3

Project realization

3.1 Linux installation

The installation of linux into the PC cartridge required several steps. First
of all, I needed to build the toolchain (compilator, and c libraries) specific to
the STPC processor. The next step was to build a linux kernel containing
specifics drivers, and the last step was to make a distribution containing the
common UNIX utilities.

3.1.1 Compile Toolchain

The Processor present in the Pekee PC cartridge is a STPC, based on a
486 architecture. So, we can’t compile program with the classic gcc installed
on my computer (using a pentium 4). Thus, I needed to compile gcc in
this computer to build stpc programs, what is called a cross-compilator.
First, I compiled binutils-2.15 which supplies the linkers and assembly tools,
gce-2.95.3, a ¢ and c++ compilator needed to build the kernel and other
programs, and finally glibc-2.2.4 which provides many essential libraries to
build programs. This stage took me a lot of time because 1 tried many
versions of those tools which were not compatible and some components
could take more than half an hour to compile.

3.1.2 Linux kernel

The linux kernel is the heart of all linux systems, it manages the processes
and all the devices. I installed the kernel linux-2.4.25 with some patches to
improve real-time performances :

e low-latency : it decreases the latency time when a task is loaded

Figure 3.1: BusyBox logo

e preemptible : another patch which reduces latency

e hight-resolution-timer : it increases the timer resolution, this patch
doesn’t work with an stpc architecture because the timer seems to be
incompatible

I also installed the kernel linux-2.4.25-adeos with rtai modules needed to
program real-time applications. Those patches replace the linux scheduler
with a real-time scheduler and runs linux as a low-priority process.

3.1.3 Linux utilities and Busybox

To work with a linux system, it is essential to have a minimum number
of utilities, like a shell, functions to handle files, users managers, networking
utilities, etc. As I had a few disc space and limited resources, I didn’t choose
the common GNU utilities but the BusyBox package. This tool is indeed the
“Swiss Army Knife of Embedded Linux”, it combines tiny versions of many
common UNIX utilities into a single small executable and it was written with
size-optimization and limited resources in mind. This package is used in many
embedded systems and in the installation disk of many linux distributions
like red-hat, debian or mandrake.

After the Busybox installation, I needed to write some configuration files
and init scripts which initialize the system. I also had to install some other
utilities like “ssh” to have all network support. To boot the system, I used the
GRUB loader, which is a great tool but which requires a minimum amount
of time to understand.

10

OPP frames to
communicate
and control
Pekee

Figure 3.2: OPP bus

At this stage, I didn’t have the Pekee PC-cartridge yet, so I tested all in
an old notebook computer with a pentium 133 So I could test and develop
my distribution, but [wasn’t sure it would work on the Pekee PC. Finally,
when I received the card I had no problem installing my distrib, and in spite
of its delay, I didn’t really waste time.

3.2 Drivers programming

3.2.1 OPP driver

To control the robot and to analyze sensor values, we need to communicate
with the Pekee micro-controller, this communication uses the OPP (Open
Parallel Platform™) bus (cf Figure 2.3). This bus has been created by Wany
Robotics society and no drivers were available for linux, so [needed to make it
myself. To get started, I read a program from Stephane Mocanu, a research
scientist from the LAG; this program used the OPP bus in user space, I
adapted and modified it to build a module which would work in the kernel
space and be more efficient. The driver works as a character driver and allows
to send and receive requests to the OPP bus using the standard read/write
functions on a special device file.

11

When I finished this driver, I wrote a library to use this bus easily. The li-
brary provides functions to send and receive informations to the Pekee Micro-
controller, and other functions to use the bus in multi-threads applications.

3.2.2 Camera driver

The Pekee PC-cartridge integrates a color video camera (720 x 560 pixels).
To capture frames, a video input port is included in the STPC Microproces-
sor. Searching documentation of this device, I found the STPC Development
Kit, a package made by STMicroelectronics, which contains a library to use
all the STPC graphic functions. I began to write a program which could cap-
ture frames, but later, I realized that it would be great to have a “Video for
Linux” compatible driver, so, after reading more documentation, 1 created
such a driver. This driver was a minimal driver which only contains enough
functions to capture frames and to be used by common video capture pro-
grams.

3.3 Application programs

3.3.1 Tracking program

In order to test the OPP communication, I wrote a first program which
tracks a ball or other object with the infrared distance measurement sensors
and follows it. This simple program used the OPP bus in the two sides, and
so can check the driver.

When I had finished the camera drivers I could take care of another track-
ing program using the camera. This program made a color tracking to follow
a red ball and used the infrared sensors to avoid obstacles.

For the moment, I can validate my drivers but all those programs worked
on the Pekee cartridge and thus, I was quickly blocked by the cpu speed, I
decided then to write a tcp server to transmit OPP commands and video
frames by the network.

3.3.2 OPP and Video servers

To make it possible to control the robot by the network, I created a server
which links the opp bus to the network, It receives commands through the
network and transmits these to the OPP bus, and on the other side, each

12

OPP received frame are sent to the network. With this server, it is possible to
control Pekee and to analyze sensors measurements with a distant computer.
I also wrote a second server witch sends camera frames on the network. This
server workes fine but, as images weren’t compressed the data rate was very
low (at best two frames/second), that’s why I tried to use existing programs
which encode and stream video data, but the STPC microprocessors were
not enough powerful to real-time encode video, so I did not manage to obtain
better results; moreover, I didn’t have enough time to follow up my work.

3.3.3 Remote control program

To use those two servers, I realized a little remote control application. This
program can be launch in a computer linked to the Pekee network. It draws
the camera view in an windows; it sends a motion order to the robot when
we press a directional key, and it also draws the infrared telemeter status
in the windows. This application is not only an amusing program to play
with the robot, but a great test of all the functions I wrote; furthermore, the
POP-ART team wanted to experiment such programs.

13

. —l"

Camera Pekee

LA

Figure 3.3: Remote control program

14

Chapter 4

Conclusion

This internship was very fruitfull to me because I had to cover many dif-
ferent fields. I also learnt new concepts and new ways of working.

First, as I installed an embedded Linux system, I could learn all the Linux
structure, from the kernel to basic utilities. I also learnt to write device
drivers and to work in kernel space, which change the way to program.

Next, I worked with real-time system, and even if I saw it a bit during
System 2 classes, I learnt how such a system is built and how it is used.

In the image field, I understood how the low level is implemented and how
to use or program a camera driver.

Finally, in the robotic field, I could test some obstacle avoidance, color
tracking and remote control methods.

I realized that before programming, a long time was necessary to find
and understand documentations; indeed, I spent between fifty and seventy
percent of time reading manuals, web pages or forums. I also had to use
other people’s code, which I needed to understand and sometime correct, so
I saw it is necessary to comment all code and to write manuals.

On the human side, I learnt how to work in a small team, and I often
needed to meet expert person to resolve some problems. For example, I had
to take contact with Wany Robotics society to have some information.

15

To conclude, I think that internship was very benefic to me as I learnt a
lot, and it made me discover the research and work’s world.

16

Bibliography

URLs

INRTALPES
http://www.inrialpes.fr

SED
http://www.inrialpes.fr/iramr/

POP-ART
http://www.inrialpes.fr/pop-art.html

Wany Robotics
http://www.wanyrobotics.com

Busybox
http://wuw.busybox.net

Articles and books

Karim Yaghmour, Building Embedded LINUX SYSTEM, O’Reilly & Associates,
Inc, USA, First Edition, April 2003.

Alessandro Rubini, Jonathan Corbet, LINUX pilotes de périphériques, O’Reilly,
Paris (FR), Second Edition, 2002.

Pierre Ficheux, Linux embarqué, Eyrolles, Paris (FR), Second Edition, 2003

Herman Bruyninckx, Real-Time and Embedded Guide, K.U.Leuven, Mechanical
Engineering, Belgium

DIAPM-RTAI, A Hard Real Time support for LINUX
http://www.rtai.org/documentation/reference/rtai_man.pdf

17

