
Object knowledge base revision
Isabelle Crampé and Jérôme Euzenat*

Abstract. A revision framework for object-based knowledge
representation languages is presented. It is defined by adapting logical
revision to objects and characterised both semantically and syntactically.
The syntactic analysis of revision shows that it can be easily interpreted in
terms of object structures (e.g. moving classes or enlarging domains). This
is the source of the implementation and it enables users to be involved in
the revision process.

There has been comprehensive work done on revision in logical
formalisms. However, due to several factors (complexity of
revision and decision procedures, needs not well-stated [7] and
mismatch between logical formalisms and implemented
knowledge representation systems), little have been
implemented. Moreover, very few studies (with the notable
exception of [11]) have been devoted to revision in object
formalisms.

The present work attempts to transfer the results of logical
revision to the field of object-based knowledge representation
systems. Moreover, its goal is to come up with an implemented
system in the context of error correction during knowledge base
editing.

Two noticeable points are thus taken into account:
• the revision must take advantage of the structure of object

formalisms (the developed operator is grounded on a
language which enables a localised syntactic
characterisation of inconsistency and a natural
interpretation of minimal revisions in terms of objects);

• the user can be interactively asked about the possible
revisions.

The paper begins by formalising a basic object-based
language (§1) in order to formally characterise the kind of
revision which is being performed. Then we introduce a
syntactic manipulation of the knowledge bases required in order
to transpose usual revision notions such as contraction and
minimality (§2). In section 3, revision is defined and
minimality criterion is introduced. They are found to closely
follow the object-based structure. In the last section, we finally
present the implementation of revision and its embedding in an
actual knowledge representation system.

Proof of propositions, extensions and extensive examples
can be found in [3].

1. OBJECT REPRESENTATION LANGUAGE
The definition of a language corresponding to object-based
notions has two purposes: formally defining what objects mean
and allowing an easier transposition from logical revision to
object models. Although the language presented here might
seem simple, it covers in fact a large part of object
representation systems.

1.1 Language
As expected, the representation language contains objects and
classes. They have attributes which are typed in the classes and

valued in the objects. The values of attributes can be either
objects or basic values (integers in the examples). Moreover,
there is a notion of sub-class relation between classes and of
attachment of an object to a class. The grammar of the language
is presented below.

Definition 1 (Grammar).
<KB> ::= {<assertion>*}
<assertion> ::= <spec> | <attachment>

| <class_slot> | <inst_slot>
<spec> ::= <class_name> ! <class_name>
<attachment> ::= <inst_name> " <class_name>
<class_slot> ::= <class_name>.<slot_name>#<domain>

| <class_name>.<slot_name>#<class_name>
<inst_slot> ::= <inst_name>.<slot_name> = <value>

| <inst_name>.<slot_name> = <inst_name>
<class_name>|<inst_name>|<slot_name> ::= <identifier>
<identifier> are alphanumeric strings. <value> and <domain> are
integer and intervals, respectively.

Moreover, there are meta-syntactic constraints:
• A knowledge base is a finite set of assertions;
• The graph of the ! relation, called specialisation, is acyclic;
• The graph of the # relation, called slot restriction,

(composed with !) is acyclic.
It can be noted that classes and instances can be introduced

more than once: multi-specialisation (several super-classes for a
class) and multi-instanciation (object attached to several
classes) are allowed. Figure 1 graphically presents such a
knowledge base.

c1

c0

c2

a

a

a

c4 a

i

i '

c3

i" a

[0 100]

24

[10 25]

[5 15]

18

[-$ +$]

!

=/#
"

a

Figure 1: B={c1!c0 ; c2!c1 ; c3!c2 ; c4!c2 ; i"c1 ; i'"c3 ; i""c4 ; c0.a#[-$
+$] ; c1.a#[0 100] ; c2.a#[10 25] ; c4.a#[5 15] ; i.a=24 ; i'.a=18}.

1.2 Semantics
The semantics of the language is given by reference to a domain
of interpretation. The objects are interpreted as the elements of
this domain while classes are subsets of it. The specialisation
relation is interpreted as subset and attachment as set
membership.

This semantics is not that of terminological logics [11]
because the language presented here is purely descriptive (there
is no definition of the classes as necessary and sufficient

* INRIA Rhône-Alpes
655 avenue de l’Europe, 38330 Montbonnot Saint-Martin (France)
{Isabelle.Crampe,Jerome.Euzenat}@inrialpes.fr
Corrected version: 31/08/1998
© 1998 I. Crampé and J. Euzenat
ECAI 98. 13th European Conference on Artificial Intelligence
Edited by Henri Prade
Published in 1998 by John Wiley & Sons, Ltd.

Belief Revision and Nonmonotonic Reasoning 4 Isabelle Crampé and Jérôme Euzenat

conditions) and not all formulas that can be assigned a truth
statement are reducible to subsumption. Moreover, the language
has been designed to correspond to those many people work
with every day. Another semantics that comes to mind is that of
frame logics [10]. It is not used here because our semantics of
specialisation is more precise (it is strictly identified with set-
inclusion and not with an arbitrary order relation).

Definition 2 (Interpretation).
Let B be a knowledge base (with O, C, A as set of object, class
and attribute names respectively and % as the set of possible
values) and D a domain. An interpretation is a pair <D,I>, in
which I is called interpretation function:

I: O & D injective
C & 2D

A & (D&% 'D) I(a) is total

Injectivity of I on O ensures the unique name assumption for
objects.

Definition 3 (Assertion satisfaction).
An interpretation <D,I> satisfies an assertion ((written
|= <D,I>() if

|= <D,I> c!c' iff I c I c() ()#)
|= <D,I> c.a#d iff I a c I d(|) ()#
|= <D,I>

o c" iff I o I c() ()"
|= <D,I>

o a v. = iff I a I o I v()(()) ()=
|= <D,I> c.a#c' iff I(a|c)#I(c')
|= <D,I> o.a=o' iff I(a)(I(o))=I(o')

I(a|c) is the domain of the interpretation of slot a when the
codomain is restricted to c.

As usual, a knowledge base model is an interpretation which
satisfies all assertions, an assertion is a consequence of a
knowledge base if it is satisfied in every models, and a
knowledge base is consistent if it has at least one model (and
inconsistent if it has none).

1.3 Deduction
Modelling deduction is useful for revision since inconsistency
is sometimes raised by inferring in the knowledge base and
since the set of deduction rules can help to revise through an
abductive process.

A deduction procedure is provided as a set of inference rules
specific to object representation systems. Some rules (!-
reflexivity) are technical rules (enabling to obtain
completeness), and others are well-known (!-transitivity,
inheritance). "-inference is an original rule (suggested in [4])
providing a kind of type-inference not provided by many
systems but required by the above semantics.

Definition 4 (Inference rules).
* c, c', c", ci"C, o"O, a"A, v"V and d, d', di"T:

(1) (!-reflexivity)
c c!

(2) (!-transitivity) c c c c
c c

!)) !))

!))

(3) ("-closure) c c o c
o c

!) "

")

(4) (d-intersection) c a d c a d
c a d d

. .
.
)

+)

(5) (d-inheritance) c a d c c
c a d

.
.

) !

) #

(5’) (c-inheritance) c a c c c
c a c

.
.

))) !

) #))

(6) (d-closure) c a d
c a d

.
.
#

)
d d<):

(6’) (c-closure) c a c c c
c a c

. ' ' "
. "

!

#

(7) (o-valuation) { . }
.

c a d o c
o a v

i i i# "

=
{ }v d

i i= +

(8) ("-inference) c a c o c o a o
o c

. ' . '
' '

" =

"
The closure (Cn(B)) of a knowledge base B by the rules i s

defined by the set of assertions obtainable by applying the rules
and deducibility by membership of an assertion to the closure.

Definition 5 (Deduction).
An assertion (is deducible from a knowledge base B (written
B |–(), iff ("Cn(B).

1.4 Completeness
As expected the deduction is sound and complete with regard to
the semantics.

Proposition 1 (Soundness).
Let B be a knowledge base and (an assertion,

if B |–(then B |= (.

Proposition 2 (Partial completeness).
Let B be a consistent knowledge base and (an assertion,

if B |= (then B |–(.

It is noteworthy that the completeness property is only
partial because it requires the consistency of the knowledge
base. As usual, when a knowledge base is inconsistent (i.e. has
no model) every assertion is true in all models (since there i s
none). In the present language, total completeness could be
achieved (with the help of results below) by adding inference
rules enabling to infer anything from evidence of
inconsistency.

However, retaining partial consistency allows to keep the
inconsistency local (at its source) instead of spreading it to the
whole base. This enables the revision process to start from a
relevant position.

2. NORMAL FORM AND SYNTACTIC TREATMENT
While a theoretical presentation of an object representation
language has been provided, actual implementations are very
different. A normalisation process is usually applied to the
knowledge base enabling to compact it and to retrieve
knowledge efficiently.

A normal form for knowledge bases is presented here because
it allows to define syntactic treatments on the knowledge bases
used in revision. A constructive characterisation of the normal
form is given before syntactically characterising inconsistency.

2.1 Normal form
The definition of the normal form is first provided axiomatically
through three properties. Basically, it is a form equivalent to the
initial knowledge base (1 and 2) in which the deletions are
effective (3, i.e. if an assertion is deleted from the base, it is not
deducible from it anymore). This property is invaluable when
revising because it discards some non minimal revisions.

Belief Revision and Nonmonotonic Reasoning 5 Isabelle Crampé and Jérôme Euzenat

Definition 6 (Normal form).
The normal form of a base B, written NF(B), is such that:
(1)B |– NF(B),
(2)NF(B) |– B,
(3) for each (of NF(B), NF(B)–{(} |/– (.

Proposition 3 states that the normal form exists, is unique
and can be obtained by a simple procedure. It roughly consists
of applying the deduction rules backward, starting with the
knowledge base closure. Of course, the implementation does not
start with the deductive closure but rather mixes inference and
computation of the normal form.

Proposition 3 (Characterisation of normal form).
Let B be a base, the normal form of B is computed by:

NF(B) = [Cn(B)–{(c!c)"Cn(B)}]
– {(c!c") ; (c!c'), (c'!c")"Cn(B)}
– {(o"c) ; (o"c'), (c'!c)"Cn(B)}
– {(c.a#d) ; (c.a#d')"Cn(B) et d'<:d}
– {(c.a#c') ; (c.a#c"), (c”!c')"Cn(B)}
– {(o.a=v) ; (ci.a#di)"Cn(B) et { }v d

i
i= + }

– {(c.a#d) ; {ci.a#di, c!ci}"Cn(B), + =
i

id d }
– {(c.a#c') ; (c".a#c'), (c!c")"Cn(B)}
– {(o"c) ; (o'"c'), (c'.a#c), (o'.a=o)"Cn(B)}

2.2 Inconsistency
Among the advantages of the normal form is the opportunity to
syntactically isolate the source of inconsistency. This,
combined with the partial completeness property above, allows
for the immediate localisation of inconsistency and the
triggering of abductive repairing mechanisms.

Proposition 4 (Syntactic inconsistency).
A knowledge base B is inconsistent iff one of the following
propositions is true:
(1) (o.a=x)"B, (o.a=x')"B with x,x’.
(2) B |–o"c, B |– c a d. # , (o.a=v)"B with ¬v:d
(3) there exists I, such that for each i"I B |–o"ci,

(ci.a1.a2.…an#-di)"B and +
"i I id =Ø

with c.a1.a2.…an#-d standing for “there exist c1,…cn, c’1,…c’n

such that for each 1!j!n (cj!c’j)"B and (c’j.aj#c’j+1)"B (with c=c1

and (c’n.an#d) "B)”.

Proposition 5 (Complexity).
The complexity of obtaining the normal form and detecting
inconsistency is polynomial.

3. REVISION
The definition of revision on the object representation language
is provided below (§3.1). Minimality is defined and can be
characterised both semantically and syntactically (§3.2).
Moreover, this minimality has a natural interpretation in the
context of object languages (§3.3). This allows to apply i t
straightforwardly to actual knowledge bases (§4).

3.1 Revised knowledge bases
Here are classically introduced the notions of contracted base (a
consistent subset of a knowledge base inconsistent with a
particular assertion) and revised base (a contracted base to which
the problematic assertion has been added).

Definition 7 (Contracted knowledge base).
Let B be a consistent base and (an assertion such that B'{(} i s
inconsistent. B' is a contracted base of (B,() iff Cn(B').Cn(B),
(that is B' |, B and B |= B') and B''{(} is consistent.

Definition 8 (Revised knowledge base).
Let B be a consistent base and (an assertion such that B'{(} i s
inconsistent. B' is a revised base of (B,() iff B'=B"'{(} with B"
a contracted base of (B,()

3.2 Minimality
Among the various revised knowledge bases, a partial order can
be provided enabling to select the closest revisions to the
initial knowledge base. This order is based on consequence (or
entrenchment).

Definition 9 (Order between contracted knowledge
b a s e s) .
Let B' and B" be contracted knowledge bases of (B,(), B'/B" iff
any of the following equivalent propositions is satisfied:
(1) B' |= B"
(2) Cn(B")#Cn(B')

Thus the notion of minimality is strictly based on the
conservation of the maximum of deductions (or the limitation of
new models).

Definition 10 (Minimal contraction).
B' is a minimal contraction of (B,() iff B' is a contracted
knowledge base of (B,() and there is no B",B' such that B" is a
contracted knowledge base of (B,() and B"/B'.

In order to manipulate contracted knowledge bases, we need
to write them as finite assertion sets, namely using normal
form. The normal form of a contracted knowledge base of (B,()
B' can always be written as B'=NF(B')= (NF(B)–)0B)')+B with
the following constraints:

)0B 1)+B = 2,)0B # NF(B) and)+B # Cn(B)
This corresponds to the normal form of B from which a set
)0B is deleted and another set)+B , deducible from B, is added.
The minimality can be characterised semantically and

syntactically.

Proposition 6 (Semantic characterisation).
B' is a minimal contracted knowledge base of (B,() iff
*3 such that B |= 3 and B''{(} |, 3 then B''{(}'{3} i s
inconsistent.

Proposition 7 (Syntactic characterisation).
Let B' and B" contracted knowledge bases of (B,(), then B' i s
smaller than B" (B'/B") iff) #))0 0B B and)))+B B|– .

The two characterisations are equivalent.

3.3 Object interpretation
One strength of the resulting revision is that it can be
interpreted in terms of objects instead of logics. In this
particular case, object terms can be substituted for logic ones. In
fact, the revision of an object-based knowledge base is a set of
the following modifications:
• moving an object upward in the class hierarchy;
• deleting a value of an object slot;

Belief Revision and Nonmonotonic Reasoning 6 Isabelle Crampé and Jérôme Euzenat

• enlarging a class slot restriction (by enlarging the domain
or using a more general class);

• moving a class upward in the class hierarchy.
Minimality itself has a behaviour that translates into

objects.

Proposition 8 (Object interpretation o f
m i n i m a l i t y) .
B' is a minimal contracted knowledge base of (B,() iff:
(1) B' is a contracted knowledge base of (B,().
(2) * B" a contracted knowledge base of (B,(), if))0B #)0B and

)+B #))+B , then B'=B".
(3) *(c!c')")+B , *k,c', if B' |–k!c' and (c!k)"Cn(B), then

(c!k) cannot be added in B''{(}.
(4) *(o"c)")+B , *c',c, if B' |–c'!c and (o"c')"Cn(B), then

(o"c') cannot be added in B''{(}.
(5) * (c.a#d)")+B , *(c',d'),(c,d), if d'!:d, B' |–c!c' and

(c'.a#d')"Cn(B), then (c'.a#d') cannot be added in B''{(}.
(6) * (c.a#k)")+B , *(c',k'),(c,d), k,k'"C, if B' |–k'!k ,

B' |–c!c' and (c'.a#k')"Cn(B), then (c'.a#k') cannot be added
in B''{(}.

(7) *(o c")")+B , *c',c, o', a if (c'.a#c)"Cn(B), (o'"c')"Cn(B)
and (o'.a=o)"Cn(B), then one of the three assertions cannot
be added in B''{(}.

(8) *(o.a=v)")+B , for each minimal assertion set {ci.a#dij,
o"ci}"Cn(B) such that {v}=+dij, then one of the assertions
cannot be added in B''{(}.

c

k

c ' c

o

c '

B'+ inconsistent

c

c '

d'!:d

a

a d

d '

c

c '

k '

k

a

a

(3) (4) (5)

(6)

o'

c '

a

(7)

o

c
a

o

c '

a

(8)

v

c

a a
dd '

{v}=d d'+

Figure 2. Examples of the different cases of the proposition 8.

Proposition 8 basically states that the notion of minimality
can be interpreted on specialisation hierarchies as it is shown in
figure 2. Its interpretation is that: if an assertion (3:
specialisation relation, 4,7: class membership, 5,6: slot
restriction, 8: slot valuation) is added ()+B) in a minimal
knowledge base, some other assertion (3: specialisation
relation, 4: class membership, 5,6: slot restriction, 7: slot
valuation, class membership or slot restriction, 8: class
membership or slot restriction) which was necessary to its
inference in the initial knowledge base (B) has to be discarded in
order to avoid inconsistency ()0B).

4. WORKING OUT REVISION
The final goal of this work is to build a practical revision
system for an actual object-based system. The results provided
so far (because they are always syntactically characterised on the
normal form) allow to implement this revision.

Below, the context in which revision is to be applied i s
provided (§4.1). This context is important in the feasibility of
the system. Some not self-explained implementation details are
then provided (§4.2).

4.1 Framework
The revision operation is used in the context of a shared
knowledge base. It aims at helping users to sort out the conflicts
which can result from a modification they attempt. Revision i s
thus triggered when the users interact with the system.

Since there can exist many different minimal revised bases,
the task of choosing the appropriate one is left to the user
(while there are some general strategies such as not modifying
terminological knowledge or — conversely — not modifying
assertional knowledge). In order to be synthetic, the choices are
presented to the user in a levelled way (following the abduction
processed by the algorithm).

Thus, the revision protocol is the following:
1) the user attempts a modification;
2) the system detects an inconsistency, points it out to the user

and proposes some assertions to withdraw (including the
modification);

3) the user selects the assertion to withdraw; this might be
sufficient or require more iterations in order to select from
the various ways to withdraw the assertion.

Detecting an inconsistency related to a new assertion is very
efficient (polynomial) due to the results of §2.2. However, the
finding of all the revisions remains intractable in this system.
Taking advantage of the user in order to choose between the
various alternatives to explore enables to obtain any revised
base in polynomial time (because only the abduction branch
which leads to it is explored and testing consistency i s
efficient). However, if the users decide to explore several
branches the revision process can be very long.

4.2 Implementation
The described system has been implemented on top of the
Troeps object-based knowledge representation system [13]. It
traps all the errors raised by Troeps when the system is operated
and, if the error is revisable (e.g. it is not a spelling error), the
revision system deals with the problem.

When inconsistency is detected, the assertions involved are
precisely known. For each kind of inconsistency, we have listed
the possible global strategies (e.g. move a class, move an
instance under the most specific class possible). When a
particular inconsistency arises, the adapted strategy is applied
to the concerned assertions. The choices made by the user are
ordered such that the first modifications made cannot be
influenced by the following ones, since for example assertions
on class hierarchy are modified before ones on instances. So
that, the minimality of the global solution is generally ensured
by the minimality of every steps. There are a few exceptions
when a choice has an impact on previous identified
modifications for which an a posteriori verification is needed,
especially to verify if no assertion has been unnecessarily
removed.

Interaction with the user is handled through HTTP (as is the
rest of the system). At any moment the user can decide to
abandon the current track and to come back to a previous choice.

Belief Revision and Nonmonotonic Reasoning 7 Isabelle Crampé and Jérôme Euzenat

This is implemented by stacking the alternatives (of course this
can take polynomial space).

5. DISCUSSION
The apparent simplicity of the language proposed is a point
deserving discussion. In fact, the language presented here covers
a large part of the needs in object knowledge bases whose
purpose is not to solve any possible problem but rather to
organise knowledge and answer to some simple queries (e.g.
[5]). In the examples, values are integers and domains are
intervals, but this is a restriction which is not required by the
work presented. The implementation takes advantage of an
independent type system [2] that provides the required
operations (emptiness test, intersection, generalisation).
However, the expressiveness of the language could be enhanced
in other ways (e.g. by adding constructors such as list or set). A
more dramatic and required improvement would be to consider
cyclic references among objects and classes.

Another important point is complexity. As a matter of fact,
the complexity of the revision process exists but it i s
transferred to the users. The rationale behind this is that users
are those who know the revision to be done and that it cannot be
achieved automatically: the knowledge base does not contain
the knowledge required for taking the decision [7]. In the tests
we carried out, the compromise seems satisfactory. Although,
the users could be overloaded with the number of solutions they
have to consider. We have tried to overcome this problem
through the design of the user interface and are currently
working on an argumentative framework allowing several users
to collaborate in the management of the revision.

6. RELATED WORKS
The revision obtained satisfies the basic AGM postulates (the
first six ones) of [1] and a maximal consistent set of Hansson
constraints [8]. It can be characterised as a maxi-choice operator
[1].

The main related piece of work concerns revision in
description logics [11,12]. However, the complexity of the
decision problem in description logics did not allow the design
of operational systems. The presented system is more alike
feature algebras, however, we are not aware of any attempts to
revise in this context.

Recently, Norman Foo [6] proposed methods to revise
conceptual graph bases, others have considered using scripts for
repairing errors in problem solving methods [9] and numerous
other works have studied reorganisation of object databases
(with the help of invariant properties and rules for restoring
them). These studies give an idea on the methods for revising a
base but do not explicitly consider the semantics of the
knowledge representation formalism.

Theodoratos [14] studied the same problem as ours. His
language is more powerful than the one used here in the
expression of the links between classes, but slots are not
considered. From a logical modelling of the class definition
language, he defined two classical revision procedures, showed
the co-NP-completeness of the general problem and several
polynomial restrictions interesting for the language presented
here.

7. CONCLUSION
We have presented a framework for interactive knowledge
revision in object-based knowledge representation systems. It
applies the results of automatic revision in logic to interactive
revision in object knowledge representation systems. The work
takes advantage of the structure of objects in order to constrain

the space (the inconsistency does not spread, the source of
inconsistencies can be syntactically tracked and the revisions
are naturally ordered) and to interact with the users in an object
style.

The complete treatment presented here has also been
successfully applied to incoherent classes (classes whose
interpretation is the empty set in all models) [3]. This has not
been presented due to restricted space.

There are three lines of research that can be developed from
this point:
• Extending the language capabilities (this covers cyclic

references, type constructors — set, list, etc. — and
perspectives and bridges — Troeps features [13]).

• Introducing the notion of preference in the implementation
(obvious choices are protecting the « conceptual scheme »
and protecting the data).

• Exporting that model to typed object-oriented programming
languages (for providing the possible repairs to the
compiling errors in such languages).

ACKNOWLEDGEMENTS
We thank Roland Ducournau for helpful comments on a previous
version of the article.

REFERENCES
References [2, 3, 5, 13] are available at:

http://www.inrialpes.fr/sherpa/publi.html

[1] C. Alchourrón, E. Gärdenfors, P. Makinson. On the logic of theory
change: partial meet contraction and revision functions. Journal of
symbolic logic. 50(2):510-530, 1985

[2] C. Capponi. Type extensibility of a knowledge representation system
with powersets. Lecture notes in computer science 1325:338-347,
1997

[3] I. Crampé. Révision interactive dans une base de connaissance à
objets. Thèse d’informatique, université Joseph-Fourier, Grenoble
(FR), 1997

[4] R. Ducournau. Les incertitudes de la classification incertaine. Actes
3es journées « langages et modèles à objets », Leysin (CH), pp183-
200, 1996

[5] J. Euzenat, C. Chemla, B. Jacq. A knowledge base for D.
melanogaster gene interactions involved in pattern formation. Proc.
5th ISMB, Halkidiki (GR), pp108-119, 1997

[6] N. Foo. Ontology revision. Lecture notes in computer science 954:16-
31, 1995

[7] N. Friedman, J. Halpern. Belief revision: a critique. Proc. 5th KR
conference, Cambridge (MA US), pp421-431, 1996

[8] S. Hansson. A test battery for rational database updating. Artificial
intelligence 82:341-352, 1996

[9] Y. Gil, M. Tallis, A script-based approach to modifying knowledge
bases, Proc. 14th AAAI, Providence (RI US), pp377-384, 1997

[10] M. Kifer, G. Lausen, J. Wu. Logical foundations of object-oriented
and frame-based languages. Journal of the ACM 42(4):741-843,
1995

[11] B. Nebel. Reasoning and revision in hybrid representation systems.
Lecture notes in computer science 422, 1990

[12] B. Nebel. Syntax-based approaches to belief revision. in P.
Gärdenfors (ed.). Belief revision. Cambridge tracts in theoretical
computer science 29. Cambridge university press, Cambridge (UK),
pp52-88, 1992

[13] Projet Sherpa. Tropes 1.0 reference manual. Internal report, INRIA
Rhône-Alpes, Grenoble (FR), June 1995 (rev. Troeps 1.2 reference
manual, May 1998, 142p.), 85p.

[14] D. Theodoratos. Updating object-oriented schema structures viewed
as logical theories. Technical report 12, ERCIM, Rocquencourt (FR),
1995

