
in: Nicolaas Mars, Towards very large knowledge bases (proc. 2nd international conference on building and sharing very
large-scale knowledge bases (KBKS), Enschede (NL), 1995), pp143-155, IOS press, Amsterdam (NL), 1995

Building consensual knowledge bases:
context and architecture

Jérôme Euzenat
INRIA Rhône-Alpes

IMAG-LIFIA,
46, avenue Félix Viallet,

38031 Grenoble cedex 1, France
Jerome.Euzenat@imag.fr

ABSTRACT

A protocol and architecture are presented in order
to achieve consensual knowledge bases (i.e. bases
in which knowledge is expressed in a formal
language and which are considered as containing
the state of the art in some research area). It
assumes that the construction of the base must
and can be achieved collectively. The architecture
is based on individual workstations which provide
support for developing a knowledge base: formal
expression of knowledge through objects, tasks
and qualitative equations annotated with hypertext
nodes and links. It also provides tools for
detecting similarities and inconsistencies between
pieces of knowledge. These bases can be grouped
together in order to constitute a new reference
knowledge base. The process for constructing this
last base mimics the submission of articles to
peer-reviewed journals. This is achieved through a
protocol for submitting knowledge to the group
base, confronting it with the content of that base,
amending it accordingly, reviewing it by the other
knowledge bases and finally incorporating it. The
system is to be used by researchers in the field of
genome sequencing.
KEYWORDS: CSCW — knowledge sharing —
knowledge revision — negotiation — protocol —
knowledge communication

1.INTRODUCTION

Research activity is principally collaborative:
available knowledge is increased by the work of many
people in different disciplines and in many places.
Collaboration is achieved through one main medium:
written books and journals. Thus it takes months and
years to be fruitful.

Nowadays, research in molecular genetics aims at
understanding and comparing the information contained in
genomes. The data involved has two important
characteristics: it is growing so fast that it cannot be dealt
with manually and it is expressed in such a way that
formal computerised treatments can be applied. Thus, an
important proportion of people involved in molecular
genetics work in “collaboratories”: the research teams are
located in different laboratories and they use the computer

as a medium. It is used for communicating informal text
(by mail or ftp), but moreover for communicating the
formal results of experiments (through the large general
sequence data banks and small specialised ones [17, 24,
10]). We have already developed knowledge management
tools which have been used in the building of knowledge
bases in molecular genetics [19] and other fields [25]. We
are currently involved in the development of a (software)
workstation for molecular genetics research in close
collaboration with two biology laboratories.

The “computer as medium” idea could be strengthened
by extending it towards the knowledge itself. Hence,
instead of merely reproducing the paper journals in
computers, the principles of scientific journals must be
applied to the knowledge formally expressed in a
computer. The result should be a consensual knowledge
base, i.e. which everybody in a group agrees to be a
reasonable state of the art. It can be used for confronting
new results and for learning new knowledge. A
consensual knowledge base can also evolve with research
results. For that purpose, a computer environment called
Co4 (for collaborative construction of consensual
knowledge) is presented here. Co4 is dedicated to the
incremental and concurrent building of a knowledge base
organised around formalised knowledge and a set of
various annotations (text, bibliography, image,
experimental data, etc.) from which this knowledge
originates. It provides researchers with support for, on
one hand, expressing, annotating and manipulating their
knowledge, and on the other hand, submitting it to other
people and achieving consensus.

The organisation of the paper is as follows: first the
features of a researcher workstation are presented. This is
basically an extrapolation from what already exists in
biology laboratories. Then, the organisation of a college
whose aim — from the computer point of view — is the
constitution of a consensual knowledge base is presented.
It includes the protocols for consulting and submitting
knowledge to the base. The fourth section takes a closer
look at the software ground for such a system and
fundamental problems which remain open. Finally, an
extended discussion places Co4 in the many current trends
of knowledge sharing and collaborative work.

144

2.THE RESEARCHER’S
WORKSTATION

The aim of Co4 is the construction of a formalised
knowledge base: this means that knowledge is expressed
in a formal language carrying a precise semantics. The
formal structure of the corpus enables the use of
consistency checking or comparison tools for helping the
process of integrating knowledge into the base and the
process of revising the base when necessary. As anyone
would agree, this is far too formal and restrictive, so the
formal knowledge is connected to informal knowledge
(mainly in terms of text and image) structured in a
hypertext network. This informal knowledge has two
purposes: recording the reasons for acceptance and
changes in the knowledge base and adding annotations to
the formal knowledge. This section describes the
components of a knowledge base and their manipulation
by a user. The next section describes how the knowledge
bases can communicate with each other.

2 . 1 . The knowledge model
Co4 comes from two experiences with knowledge

bases in the domain of molecular genetics. The first one,
ColiGene [18], describes the regulation mechanism of
gene expression in the E. coli bacterial genome. The
second one, MultiMap, allows to describe and to
manipulate mammalian genomic maps at the cytogenetic,
genetic and physical levels. The researcher’s workstation
is an assistant to the researcher. It helps the description of

knowledge and also its discovery by automating the more
repetitive tasks of genome research. The design of these
two knowledge bases has led to the identification of four
types of knowledge to be represented:

• Descriptive knowledge on the biological entities
involved is represented in an object-based
knowledge representation system. This enables the
representation of classes of objects (e.g. genes),
subclasses (e.g. protein genes) and the identification
of an object as belonging to such a class.

• Methodological knowledge specifies the ways to
select and link up methods for a given task. It is
represented through a task management system able
to integrate, represent, process and monitor the
many computer programs for analysing the results
of experiments.

• Behavioural knowledge, which has not been
introduced in these two knowledge bases, concerns
the modelling of dynamic phenomena, such as the
dynamics of gene inhibition or activation, through
a qualitative modelling system. Such kind of
knowledge has already been used for representing
metabolism [10].

• Textual annotations on the various objects and
tasks involved are achieved through a hypertext
system which connects hypertext nodes with the
components of the descriptive and methodological
knowledge. It allows browsing among texts,
objects and tasks (see figure 1).

Figure 1 (adapted from [19]): The navigational interface using hypertext. The user has selected a class in the
class taxonomy (upper window) and has consulted the associated node of the hypertext (lower window). Some
of the words of the text are links to other nodes. From a hypertext node, it is possible to come back to the
entity it is attached to. The example is drawn from the ColiGene knowledge base, in which only the highest
levels of the specialisation graph have been annotated, essentially for pedagogical purposes.

145

The knowledge, both formal and informal, is stored in
an object-based knowledge representation system called
TROPES [14]. It comes with a clear and simple formal
semantics and tools for classification, constraint
management and task processing. In particular, it is able
to organise objects into multiple separated taxonomies
and allows the user to work on a subset of these
taxonomies. It thus answers to the need to express several
viewpoints on object classifications [17, 10]. TROPES
precursor, SHIRKA, has been connected to a hypertext
management system [8] and it is planned that it will soon
be the same for TROPES.

2 . 2 . Software architecture

The architecture of the Co4 workstation is as
described in figure 2. It is made up of three main layers:

• A user interface allowing the researchers to
communicate with their knowledge bases and with
other knowledge bases;

• The knowledge base itself which provides support
for storing formal and informal knowledge,
detecting inconsistencies in formal knowledge,
returning possible modifications in the formal
knowledge and managing the dialogue with other
knowledge bases.

• The communication layer which provides software
and hardware facilities for communicating with
other knowledge bases.

Graphic display

Routing / transaction / transport

Negotiation
controller

Update &
revision

controller
Cooperation

controler
Storage,

formal and
non-formal

KB
definition

Figure 2: The three-layered software architecture. Each box represents a software module, each circled unit is a
data/knowledge repository and each arrow represents the call of a program functionality.

For the sole manipulation of the knowledge base, the
user only accesses the revision and negotiation controllers
through the graphic interface (see figure 3). The other
components are used in the cooperative process; they are
included here for completeness. However, the knowledge
management system is accessed through an application
programming interface which enables queries and
tentative modifications of the base from both the graphic
interface and messages coming from other bases (see §3).

2 . 3 . The user and the base
The present section shows how the user can interact

with the knowledge base. It can seem obvious that the
user can query and modify the base and that modifications
must leave the base in a consistent state. However, the
way this is achieved in Co4 is particular since it must
work when the researchers want to communicate a part of
their bases to another base. Thus, the way individual
stations work is useful for both the individual and the
cooperative modes. The process is presented in figure 3.

The consultation or modification are ordered through
the graphic interface and directly processed by the revision
controller. However, in the usual mode, the modification
is prepared by a confrontation query which asks for a
comparison of a new piece of knowledge (made of
objects, tasks, hypertext nodes and qualitative equations)
and the knowledge base. The comparison of a corpus of
knowledge with another results in a report about what is
different, what is the same and what is contradictory. If
the piece of knowledge does not contradict the knowledge
base, it can be submitted for integration. If it contradicts
it, the researcher can modify it in order to fit the group
base. Concerning the informal documentation, if the user

wants to create a hypertext node for instance, it is
possible to detect if a node with the same name already
exists and to negotiate its modification.

A first requirement for a formal knowledge base is
consistency. Consistency is here defined with regard to
what the system can deduce to be consistent or not: in
typical object-based representation systems, a class whose
extension is logically reduced to the empty set is
inconsistent and an error is raised by the system. Apart
from consistency checks, the system is able to deal with
sophisticated queries asking if a piece of knowledge is
redundant, subsumed or similar (w.r.t. some distance) to a
part of the knowledge base. These queries are subject to
limitations drawn by the expressiveness of the knowledge
representation language and the expected degree of
completeness of the answer.

When a change is attempted, it first goes through the
update and revision controller which determines if the
change does not introduce inconsistencies. The
organisation of Co4 is particular in that the revision
controller, which is usually a part of the knowledge base
management system, has been detached from the
knowledge base itself. The revision controller should be
able, given an operation on a knowledge base, to manage
it in the most consistent way. If the proposal is
consistent with the base, the change is committed and the
knowledge base is simply modified. The controller also
records all the modifications committed directly by the
user in order to be able to transmit them later to the
group base (the modifications must be recorded together
with their rationale, etc.).

146

Change
and query

Error message
and answer

ReportQuery

Choice

Figure 3: Interactions between the users and
their bases. The arrows represent the flow of
information: the user can query the knowledge
base and get an answer or a report. The report
can be made of a set of alternative changes to
apply to the base in order for the user to achieve
a modification of the base. This requires a
dialogue between the revision and negotiation
controllers for determining what are these
possible changes.

When Co4 detects some problem (misspelling, typo,
inconsistency) it raises an error which is transmitted to
the negotiation controller. The negotiation controller then
opens a dialogue with the update controller in order to
establish the putative causes of each error and the
possible repairs. Then the negotiation controller is able
to submit these diagnoses and repairs to the user through
the graphic interface. It is up to the user to decide which
one to apply (or to retract the tentative change).

The behaviour and decomposition of the architecture
is directed by the wish to provide the most efficient
response to a tentative change of the base. It is based on
the idea that when users ask for a change, they express
the will to see it committed. Thus if this change is not
immediately possible, Co4 must propose the best way to
make it possible while preserving the majority of the
base. This enforces the opportunities for the change to be
accepted by the other partners when it is submitted to the
consensual knowledge base. The same holds true for
propositions of the system concerning similarity.

Moreover, in the context of the submission of
knowledge to a collective base, the architecture allows to
ask for a report and help from that base. This is presented
below.

3.OVERALL ARCHITECTURE AND
PROTOCOL

The primary aim of Co4 is the construction of a
consensual base. The principles underlying Co4 are
derived from those of peer-reviewed journals: before being
introduced in a consensual knowledge base, the
knowledge must be submitted and accepted by the
community. This requires submitting knowledge to the
base, letting it be reviewed by the other participants and
accepting or amending it according to their reactions. The
informal knowledge is also subject to submissions,
reviewing and so on. At the end, it is intended that the
knowledge stored in a consensual knowledge base be safe
enough so that anybody can use it confidently and easily.

In this section we emphasise the collaborative
facilities offered by Co4. The organisation of a college of

knowledge bases is first presented. Afterwards, the
interaction of a workstation with the consensual group
bases is detailed before turning to the protocol
implemented for dealing with knowledge submission and
negotiation.

3 . 1 . The network of knowledge bases
Co4 is made of a set of knowledge bases. Any

cooperator is viewed by the system as a knowledge base.
Knowledge bases are organised into a tree whose leaves
are user knowledge bases and whose intermediate nodes
are called group knowledge bases (see figure 4). Each
group base represents the consensual knowledge shared by
its sons (called subscriber knowledge bases). Each
knowledge base can subscribe to only one group.
However nothing prevents a human researcher from
creating several knowledge bases (maybe subscribing to
different group bases) representing different research
trends, and nothing prevents anyone from transferring
knowledge from one base to another. Also, nothing
prevents several physical users from sharing the same
base.

Group knowledge base

Subscriber knowledge bases

Achieve
Accept
Reject
Challenge

Tell

…

…

Ask-all

Figure 4: The hierarchical architecture and
message flow. The knowledge bases are
organised in a tree whose leaves are individual
knowledge bases and nodes represent the
consensual knowledge of connected individuals.
The downward types of messages include the
submission of a proposal and the reports of
approval, rejection or alternate proposal about a
submitted proposal. The upward messages
include the broadcast of accepted proposals and
the call for comments (ask-all) about a
submitted proposal.

The knowledge bases are linked together in such a
way that a particular knowledge base knows its
subscribers and its group base. To its subscribers it
mainly sends messages for broadcasting a change accepted
by everyone and calls for comments in order to establish
whether a change must be committed or not. To its group
base it sends changes that it wants the group base to
integrate. Of course, as a group base, it also receives
changes to commit and as a knowledge base it also
receives calls for comments and change broadcasts.

Each of these knowledge bases are made of the same
structure and the same software. The main difference
between group bases and researcher workstations is that
the former are completely automated and only respond to
the stimuli from other bases.

147

3 . 2 . The user and the group
The user of a workstation can subscribe to a

consensual knowledge base. This is achieved very simply
through the knowledge base definition controller which
manages the description of the group to which the
knowledge base subscribes (and for the group bases, the
set of subscribers). This base definition enables the
communication layer to route queries from one base to its
group base and its subscribers. It is intended that it also
describes the topics which the knowledge base is
interested in, etc.

As soon as the base is part of a group base, it receives
the complete content of that base (to which it is supposed
to subscribe), it is entitled to give its opinion on all
submissions currently under examination and is entitled
to submit knowledge. The interesting point is the
submission of knowledge, so let’s see what happens.

When the researchers are confident enough with the
specifics of their knowledge base corresponding to some
research results, they can submit them to the group
knowledge base to which they subscribe. This is achieved
by circumscribing the submitted part (which can include
hypertext annotations justifying them) through the
graphic interface and calling the submission procedure of
the negotiation controller. In order to complete the
submission message, the negotiation controller collects
the sets of differences between the consensual group base
connected and the selected changes (they are logged in by
the revision controller) and sends them to the group base.
Usually, the group base, through its own revision and
negotiation controllers issues a report describing how the
submitted knowledge can be added to the group base.
Thus, as usual, the user can choose a better (and
consistent) way to achieve the submission. This proposal
will be submitted to the other subscribers and committed
if it reaches consensus.

As a subscriber of the group base, the user also
receives the call for comments issued by the group base
in response to the submission (by another user) of some
material. The users can read the submission or play it in
their own knowledge base by submitting it to the
revision controller. This can result in a favourable report
or an inconsistency detection that can be used by the user
for issuing an alternate proposal. In response to the call
for comments, the users must answer by one of the
following: accepted when they consider that the
knowledge must go in the consensual knowledge base,
rejected when they do not, and alternate when they
propose another change.

When the group base has gathered enough comments,
it integrates, or not, the change in the base. The change
being now consensual, it is broadcast to all subscribers.
It may happen, however, that the research they are
currently involved in contradicts what is in the group
base. So the users can refuse the new knowledge (just as
they can also modify parts of the group base knowledge
in their local base) which is then stored in a change
logbook for further change submission.

The fact that anyone can maintain a knowledge base
as different from the consensus, allows obviously the

exploration of alternate research paths. But on a more
basic ground, it enables the communication, negotiation
and acceptation to be asynchronous. This, in fact,
reproduces the way papers are submitted, discussed and
accepted or rejected in a scientific journal: the reviewer
can take time for carefully examining a proposal since
this will not stop the work of the base which issued it.

3 . 3 . The submission protocol
The words consensus, message, etc. have been used

freely so far. A protocol has been established for the
communication between the knowledge bases. It is
implemented in the cooperation controller of the
knowledge bases. The protocol is very simple, since it
only reproduces what happens for paper submission to
journals plus the management of new subscriptions. The
messages are expressed as a collection of speech acts:
achieve (submit a proposal for inclusion into the
consensual base), ask-all (ask for the acceptance of
subscriber bases, call for comments), accept (accept the
insertion of the piece of knowledge), reject (reject it),
challenge (submit a concurrent proposal), deny (the
submitter retracts the submission), tell (send an accepted
proposal to each subscriber base). It seems quite general
since the performatives can be found, for instance, in
concurrent software engineering [15, 26].

The consensual aspect is dealt with through the
acceptation of proposals which achieve acceptance by all
of the subscribers and the rejection of other proposals (for
instance, in the context of genome sequencing, a
consensus map is a map that people involved in the
research field think correct). Consensus could be replaced
by some other definitions (like majority or intersection,
see §4.1), but it has been retained for two reasons: (1) it
enjoys interesting formal properties (if a consensual base
contains only knowledge which is accepted by all the
subscribers, this remains true if subscribers are added or
retracted), and (2) it should lead to the discussion of
proposals — not only conflicts — and thus the
collaboration of the researchers.

In a first version of Co4, the group base applies the
non destructive modifications without discussion. These
modifications are always possible in the group base,
since they are in the subscriber’s base which contains it.
In the case of destructive modification, a call for
comments, identified by a unique number (surrogate), is
issued towards all the subscribers. Among the answers
provided by the subscribers, three cases may happen:

• They all agree that the modification must be
accepted, then the modification is committed into
the group base and broadcast to all the subscriber
knowledge bases;

• One of them rejects the proposal, then the changes
are not committed and the comments provided by
the rejecter are sent to the submitter (the call for
comments is discarded in all the subscribers
knowledge bases);

• One submitter sends an alternate proposal, then the
call for comment is replaced by a call for comment
about all the proposals available (those who already

148

accepted the change, are asked to consider the new
proposal and to answer again).

It also can happen that the submitter retracts the
proposal thus leading to the retraction of the call for
comments from all the knowledge bases.

The protocol is made of a set of rewrite rules which
state what a knowledge base must do when it receives a
particular message from another knowledge base. Each
rule specifies what happens when some performative is
received by a knowledge base, for instance:

s — reply(n,accept) —> g

C:=C—{<n,achieve(p),1>},

 K:=K+p,
 g — tell(p) —> S

 <n,achieve(p),1> C

means that upon arrival of the last “accept” for a
proposition with surrogate n, the group base discards the
structure recording the call for comments process, adds p
to its local knowledge base and broadcasts it to each
subscriber. The group bases blindly apply these rules and
the final decision comes from the researchers who are the
holders of the leaves of the architecture. When a message
is issued by a group base whose subscribers are also
group bases, these last bases only dispatch the messages
to their subscribers. The protocol is presented in figure 5
as a finite state automaton. It is worth noting that the
protocol is (1) asynchronous, so that several proposals
can be in different states concurrently, (2) parameterised
by proposal p, so that the real situation in Co4 is the
Cartesian product of automata corresponding to all the
proposals, and (3) abstracted from the status of each
individual knowledge base with regard to the protocol.
Some properties of the protocol can be proved (under
additional assumptions): whenever a proposal is
submitted, it reaches in a finite time the status of
accepted or rejected, the protocol always takes into
account the opinion of a reviewer (it never waits for a
report when it is established that the proposal is to be
rejected, etc. — see §4.3).

Achieve (P)

Ask-all (P)

Tell (P)

Accept (P)
Reject (P)

Challenge (P') = Achieve (P')

Q A

RS

Retract (P)

Figure 5: The automaton corresponding to the
submission of proposal P at the scale of the
whole system of group base plus subscribers. It
reproduces four states of publication
submission: initial state (Q), submitted (S),
under review (R), accepted (A).

The protocol is handled by the cooperation controller
which acts differently on an individual base and on a
group base: in the first case it submits the changes to the
user interface while in the second one it dispatches them
to all of its subscribers. The cooperation controller is
also in charge of the management of the negotiation for

applying a change in a group knowledge base (emitting
the call for comments, receiving the answers, managing
the alternate proposals and committing or retracting the
changes). The negociation requires the identification of
the change by a unique number, the count of positive
answers, the management of alternate proposals and
retractions of a proposal. It also requires the recording of
the process in order to recall the reasons why some
change is made or not.

4.SOFTWARE TECHNOLOGY

The development of the platform presented above is
not yet complete and the representation of genetic
knowledge is not a simple task. However, the technology
for object based-knowledge representation is well known,
and similar experiences that we have had, lead us to be
confident of its achievement. Thus, the present section
focuses on the specific problems concerning the
cooperation between distributed knowledge bases. To our
knowledge, the technology is not already established for
such a proposal; thus the Co4 proposal is an occasion to
explore solutions for two particular fundamental research
areas: assisted revision in knowledge bases (§4.2) and
cooperation protocols (§4.3). Problems and solutions are
presented below, but keep in mind that they should meet
acceptance from the users before being declared
successful. So, the properties of the architecture enabling
a smooth integration of facilities are first presented
(§4.1).

4 . 1 . Modularity and genericity
The knowledge base architecture presented above

included two particularly interesting design choices: it is
the same for all of the bases, so they can be made out of
the same software packages, and it is described in a
modular fashion, so that it can be used with a very raw
system or a very complex one. This leaves the door open
for a trade-off between the complexity and power of each
algorithm. This is very precious during Co4 development
since it allows us to start with very simple components
and to enhance them progressively.

For instance, the knowledge repository can be a
simple hypertext system which identifies nodes by a
reference and raises an error when two nodes have the
same reference (the simplest system is a text repository
with the UNIX “diff” and “patch” utilities). The degré
zéro of change control consists in routing error messages
to the user, in order to have the error corrected.

Such a system can be enhanced, for example, in the
framework of a logic clause representation system (say
Prolog) by a revision module able to abduct the reasons
for the errors and to display them to the user who can
take the corrections into account. Going further in this
direction the revision module can be a knowledge base
combining algorithm able to automatically propose
corrections (e.g. [2]).

Finally, the protocol can be easily replaced by another
one, based for instance on a vote of the majority of the
subscribers, on the intersection of all of the knowledge
base or on economic decision making (for determining
the introduction or not of knowledge into the base). The
protocol is also designed independently of the content and

149

language of the knowledge base. This enables to use it
for different pieces of knowledge (hypertext or classes as
well as tasks or equations). One could imagine to refine
the protocol for dealing specifically with these
expressions. However, the specific aspect is actually
assigned to the revision module which issues the reports.

So, the architecture and the protocol provided above
are independent of the knowledge repository and the
modules which manage it.

4 . 2 . Assisted revision in object based
knowledge bases

The aim of the update and revision controller is the
modification of the knowledge base. It is usually a part of
the knowledge base able to perform an authorised
operation on a knowledge base or to raise an error. The
revision controller should be able, given an operation on
a knowledge base, to resolve it in the most consistent
way (this covers truth maintenance or, when an error
message is raised, finding the best way to achieve the
operation). The aim of Co4 will be to propose
meaningful ways to realise it, the last word being that of
the user or the subscribers.

Assisted revision of knowledge base — i.e. the ability
of detecting error messages and proposing consistent
changes — is related to the problematic of knowledge
base revision. It is a real enhancement with regard to
current knowledge base management systems and is
required by the submission of the knowledge of a
particular base to another.

Knowledge base revision has been introduced in [1]:
from a set A of axioms which deductively leads to a
theory Th(A), let the operation be such that A p is the
set of maximal subsets of A such that p Th(A) .
Retraction (–) and revision (+) operations are defined such
that A–p A p if A p Ø, and A–p=A otherwise. A set
of eight postulates defines what are the possible retraction
operators (A p is deductively closed, does not entail p,
contains Th(A) if p Th(A), etc.). These postulates can
also be defined for revision.

Syntactically, existing knowledge representation
systems are already capable of inference, consistency
check and even revision since it is possible to add new
objets (or classes or field values, etc.). Thus this
framework can be applied to object-based systems: the set
of axioms (A) is the content of a knowledge base
communicated by the subscribers, the theory (Th(A)) is
what is deducible from A.

The decision problem on what is deducible or what is
inconsistent is computationally language dependent. In
TROPES, it seems that it is decidable but that some
predicates such as classifiability should be at least NP-
complete. In object-based knowledge systems, the
foreseen revision operators should have the following
properties:

• They strongly take into account the syntactic
structure of the object-based representations, which
defines the revision rules for the syntactic operators
over objects (a class is less often modified than a
simple instance for instance);

• They correspond semantically to the postulates for
preferred revision — the model preference being

defined by a relationship between them
— allowing the definition of a relational revision
operator [1].

TROPES is able to signal errors. This is the basis for
update and revision. These errors are transmitted to the
negotiation system (errors are not just messages, but
structured objects enabling the identification of the error).
This is systematically used in order to detect what are the
causes of the error and then what are the possible
alternative changes which may be issued. For instance,
when an overly large domain is given to a field in a class,
object-based systems issue errors such as “your domain
includes values which are not possible for the field”.
However, the solution can be the restriction of the given
domain or the enlargement of the domain for the super-
classes of the class (there may be other errors: the class is
not the right one, the field is not the right one, etc.). A
system like TROPES must be able to find these simple
causes for errors and to prepare a repair action.

More operationally, the aim of such operators is:
1) localising quickly all the sources of inconsistency;
2) finding repair solutions to these inconsistencies;
3) ordering these sources and solutions with regard to

their syntactic nature;
4) presenting them to the user.

At least it is not intended that Co4 applies the
revision by itself, but rather that it helps the researchers
to easily revise their knowledge when it is inconsistent.
In the framework of such a system, there are strong
constraints of speed and intelligibility. It seems that these
constraints can be satisfied with the help of the use of
interaction which allows fast feedback from the user and
the constraining structure of objects (which limit the
exploding character of abduction and can reduce the size of
the search space).

Another promising idea is the revision operation
based on what a the users know and what they are
interested in. TROPES already supports, through
viewpoints, the selection of a particular perspective on
knowledge. Ordering the topics of interest has already
been used for expressing the semantics of revision with
several people involved (in the expression of knowledge)
[3].

4 . 3 . Cooperation protocol
The cooperation protocol is based on the architecture

of the knowledge bases (which ones are the group base
and which ones are the subscribers) and a complete set of
behaviour rules [5]. This protocol has several properties:

— there is no need for human intervention in the
group base;

— there is no message but from group base to
subscribers and back;

— each decision has been approved by all the
subscribers (recursively for a group of group bases).

The actual protocol is routed automatically (once a
knowledge base has subscribed to another), the
performative and content levels are interpreted
automatically in the group bases and the performative
level is automatically interpreted by the individual
knowledge bases (however, the system asks the user
before committing these performatives).

150

The set of messages sent from one base to another are
expressed through a speech act (loosely inspired from
“speech act theory”). Speech acts are used here for
building a set of relevant “artificial” acts rather than
trying to understand the “natural” speech acts occurring in
ordinary conversation (the same way the idea of a
grammar has been borrowed by computer science from
linguistics). Thus each particular act carries a precise
semantics (taken as the goal of the sender). The notion of
a speech act has several advantages for the particular
architecture presented here:

• It allows the separation of knowledge from what its
use (add or retract it from a particular base, for
instance);

• It is independent from the knowledge representation
language and the protocol can thus be expressed
abstractly and the library implementing it can be
used with other systems;

• It allows a speech act to refer to another speech act
(retracting a submission, for instance).

The inter-base communication uses KQML
(Knowledge Query and Manipulation Language [6])
which has been chosen because, in its early stages, it
clearly distinguished the three levels required by Co4:

Communication: to be used for the communication
layer in order to route the message;

Performative: to be used by the negotiation and revision
controllers in order to know what kind of action the
message is intended to achieve;

Content: to be used by the knowledge base management
system.

 While building the protocol, some formal properties
are required and ensured. For instance, under the following
assumptions:

— there is always, in a finite amount of time, an
answer to a query (to an individual base),

— there is not an infinite number of alternate-proposal
for a proposal, and,

— different proposals are independent,
each submission reaches the accepted or rejected status in
a finite amount of time and this status is such that a
submission is accepted if and only if it agrees each
subscriber. The two first assumptions are part of the
fairness assumption of Co4 while the latter requires
taking into account the interaction between proposals.

Difficulties with the cooperation protocol come from
the fact that it must be closely suited to the needs of
cooperative knowledge base building. Otherwise,
subscribers would work around it. The ideal protocol
should be mechanically interpretable (at least at the
performative level) and rich enough for covering
adequately all of the needs. The first requirement has been
successfully achieved through the construction of an
automatic group base protocol [5]. However, our present
protocol is very simple (only 33 rules) and must be
enhanced through experience and some assumptions may
have to be relaxed. For instance, it does not take into
account the demand from a reviewer to clarify some point
(this is planned but informal communication is not very
well taken into account by KQML).

5.DISCUSSION AND RELATED
WORKS

So far, the Co4 system has been presented as an
extension of existing systems and references to similar
systems have been avoided. In this section, Co4 is first
placed in the many taxonomies of collaborative systems.
Then the system is compared with the many current
works on knowledge sharing. Co4 is particular in several
concerns for knowledge sharing and collaborative work,
thus the third part is dedicated to the explaination of the
principles governing Co4 and of why they make it close
to some systems.

5 . 1 . What is Co4?

Co4 can find its place among the many taxonomies of
CSCW systems. With regard to [20] it has asynchronous
indirect interaction, system based coordination, data
hiding and is collaborative aware and technically non
flexible. While cooperative, Co4 dictates the way the
cooperation is achieved. This takes into account the usual
context in which research is carried out (as opposed to “is
a general purpose support for cooperative work”) in order
to deal with usual attitudes as advocated by [11].

Co4 allows the coordination of people for publishing
results they consider as achieved. So, as presented in [13],
it is only tailored for the execution stage and enables
information sharing and activity coordination. As such, it
does not aim at supporting the organisation of
collaboration on a precise topic by planning experiments
and analysis. Extending Co4 is possible, but would
require a very different interaction protocol such as the
contract net protocol [21].

According to Ellis [4], Co4 would not be a groupware
system stricto sensu, but could be classified under
coordinated multi-user editor. By opposition to Gibb’s
definition of groupware, people do not really share a
common environment since they work on their own
knowledge base. But they share the goal and the content
of the consensual knowledge base.

Co4 shares many features with the coordinator [26].
The coordinator is a system which allows people to
submit requests and offers to others who can answer by
declining, accepting or proposing an alternative. The
system is able to store these proposals and to manage the
state of each proposal. The main differences lie in the
goal of building a consensual knowledge base (common
to each individual), the formal treatment that Co4 can
apply to knowledge and the hierarchical construction of
knowledge bases (and hence of the communication)
instead of peer-to-peer communication.

5 . 2 . Co4 and knowledge sharing

The knowledge sharing idea has been promoted as a
way to avoid constructing multiple knowledge bases and
multiple reasoning systems about the same domain. It
defends, instead, the idea of sharing this achievement by
either merging the knowledge of several bases into one
(knowledge sharing approach [16]) or submitting the

151

problems to several accessible knowledge based systems
(software agent approach [7]).

There are some hints that knowledge sharing cannot
be achieved without sharing the building of the
knowledge base itself. Knowledge sharing requires not
only the intelligibility of the knowledge description
language semantics, but also the agreement on the
meaning of concepts of the domain. A project for sharing
the construction of a knowledge base has already been
described in [19]: it aims at helping scientists to build a
consensual knowledge base about their scientific research
domain. In this context, shared with the knowledge
medium idea [22], producing and maintaining the
knowledge base constitutes an end in itself. Such a
framework can also be used for huge scientific projects,
distant collaborative works or knowledge elicitation in
order, for instance, to achieve a corporate memory.

The Co4 approach differs from the software agent
approach because it considers a general architecture and
the homogeneity of agents and from the knowledge
sharing approach because it assumes that knowledge
cannot be shared unless the elaboration process has been
shared. The fact that all agents share a common goal
represented by their common knowledge base is another
unusual characteristics. This led to the design of a very
specific interaction protocol and the enforcement of
consistency in Co4.

However, the Co4 principle is similar to that of the
SHADE project [9] which has one foot in each world. The
SHADE project builds a knowledge medium which aims
at supporting the collaborative design of an artefact; in
Co4 the artefact is the knowledge base. Such a system
must enforce both the consistency and the agreement of
everyone (human or software agent) involved into the
design process. However, there are several technical
differences between both systems:

• The SHADE project uses pre-existing knowledge
bases (in the knowledge sharing fashion). It thus
puts less emphasis on knowledge base revision
than Co4.

• In SHADE, agents can be very different while in
Co4 all agents are equal (peers) and play different
roles (submitter, reviewer, etc.) depending on the
situation. The variety of agents constrains to take
into account a variety of behaviours (which changes
to notify, etc.) and requires tools for expressing
how to deal with them (publication of interest)
which have not been considered here.

The agents (bases) of Co4 are very structured since
they already share their goal (establishing of knowledge
base) and a mode of organisation (subscription tree). The
society as a whole has to process a contract (building a
consensual base by submission) by opposition to
establishing a plan for achieving the goal. It does not
have resource allocation and coordination problems: the
only problem is communication. This multi-agent
architecture is like the federated systems of [7], in which
agents communicate indirectly through facilitators. Here,
each agent is connected to the other through its
communication software which is a very specialised
facilitator: only groups accept subscription and the

communication is enabled only from one group to its
subscribers and from the subscribers to the group. The
group bases constitute the mediators between the actual
users. Their routing level is like both a KQML router and
a very simple KQML facilitator; as a consequence, each
base has the same router and facilitator components (at
the moment they have two: one for sending messages to
the group base and one to send messages to its
component bases). This is a divergence from the KQML
facilitators which are considered as knowledge bases
themselves able to dialogue with any other knowledge
base.

In the scientific community metaphor [12], close to
the software agent approach, the emphasis was on
solving problems rather than sharing knowledge. So the
aspects of the building process of a corpus of knowledge
have not been considered. However, the basic properties
of the system (commutativity, monotonicity, pluralism
and parallelism) hold true for Co4.

5 . 3 . The Co4 principles

Co4 is here presented in terms of a set of principles
which provide the background of the system. These
principles allow us to stress the differences between Co4
and other efforts concerning knowledge sharing or
collaborative processes.

5 . 3 . 1 . Uniformity
Co4 is made up of a set of knowledge bases. Any

cooperator is viewed by the system as a knowledge base.
For simplicity, all the bases are equipped with the same
software. Something interesting with regard to other
cooperation schemes (and mainly the one used in the
software agent trend) is that the knowledge bases have the
same description language (this is to be contrasted with
other approaches, in which agents are seen as knowledge
bases but their languages can be heterogeneous). This
simplifies the implementation and use of the system by
allowing to stress the collaborative aspects, but, above
all, this ensures that people are talking about the same
representation formula instead of a translated item. Of
course, each base cannot have its own representation
system. However, the use of a language independent from
the knowledge representation language (KQML),
preserves the possibility to use heterogeneous
representation languages (but communication between
bases expressed in different languages is, to our
knowledge, far from achieved). One can easily imagine a
particular agent able to translate the content of some
sequence data bank into TROPES and able to submit it to
Co4.

5 . 3 . 2 . Consis tency
The knowledge stored in group knowledge bases must

be correct, consistent and consensual. This is in great
contrast with what is currently developed over the
networks: databases available through WAIS, Gopher or
WWW do not have to be consensual nor consistent. The
data is provided as such, without any warranty of
consistency from the provider, and the retrievers have to
make it consistent before introducing it into their own
databases. Other frameworks are also different in this

152

respect: neither the knowledge sharing (when the
opportunity to modify the shared knowledge is
considered) nor the software agents provide any warranty
about the consistency of the knowledge they provide.

Moreover, the consistency is not only syntactic. The
collaborative knowledge base building ensures that the
collaborators agree on all of the details of the base and it
is expected that they also agree on the meanings they
assign to the terms. At the opposite, the knowledge
sharing view allows the sharing of “ontologies” and
mechanisms without caring that the meaning of the
components are agreed (see also [10] about ambiguous
names).

5 . 3 . 3 . Good will and fair use
Of course, a system such as Co4 is not suited for just

any purpose. It is designed for a community whose
common interests lie in the results obtained by the
community. In fact, Co4 is firstly dedicated to the
members of large groups of people sequencing genomes
in different laboratories for which the better the results of
the community, the better those of the subscribers. Thus
Co4 does assume from its users, their good will (they
will submit their discovery and opposition to proposals)
and a fair use (they will not delay some publication by
not reviewing it, they will not consume more resources
than necessary or submit proposals they know to be
false). So, there is no place for financial refunding,
quotas, deadlines or control on the queries emitted: it is
assumed that the use of Co4 will be fair enough (no
systematic submission of unverified material, etc.).

However, this does not mean that there is no conflict:
the conflicts are to be treated by negotiation upon a
protocol a bit stronger than those used in scientific
journals because it is more formal and it aims at reaching
consensus. Co4 includes an authentication of who
proposed a modification and who issued an alternate
proposal in such a way that the discoveries can be
acknowledged. There is also the obligation of citing the
sources in the hypertext annotations; this should be
facilitated by the availability of a citation editor in Co4.

Co4 could be enhanced first by deadlines (for returning
answers, etc. [26]) and second by punishments for those
reviewers who take a very long time for reviewing (for
instance, suspension of their submissions). There also
could be, for reviewing, an anonymity management
system which provides both independence and recognition
[23].

Assuming good will and fair use from the agents of a
distributed system is not unusual but not always
explicitly stated.

5 . 3 . 4 . The paper submission metaphor
 Any system allowing the building of some artefact

must have a particular change policy. The Co4 protocol
mimics that of scientific journals. To our knowledge, the
scientific journal protocol has never been used for that
purpose. The choice of such a protocol is not neutral:
first it is well known within the community and, in the
consensual version, it enforces the dialogue between
people (rather than a simple majority or intersection
protocol). The requirements of consistency and formality

allow for more strictness concerning what is published
and thus leads to a consensual rather than a review
protocol.

6.CONCLUSION

An architecture able to support the proposal of [19]
has been presented. This proposal is original in two
respects: it allows for the sharing of knowledge instead of
non formalised data and it emphasises the consistency and
the global coherency of shared knowledge. In summary, it
is a formalised peer-reviewed scientific journal rather than
a dazibao. For achieving this, we propose a knowledge
base system able to deal with formalised and non
formalised knowledge, consistent, because the formalised
knowledge constitutes a consistent corpus, consensual,
because whatever is deposited in the base is agreed by
everyone, whose aim is the sharing of the knowledge
base elaboration process.

Co4 has some limitations since the communication
protocol is very restrictive (however, the same protocol
does not prevent people from submitting to, reviewing
for and reading scientific journals). However, it will have
to be enhanced. The protocol itself is unable to account
gracefully for the concurrent submission of mutually
contradictory proposals. These major weaknesses are
under consideration and will have to go through
experimentation.

The framework presented here is not restricted to
genome research but can be applied to other research
fields, and to other activities such as the constitution of a
corporate memory. Co4 is based on deep experience with
individual workstation design and use. A complete
prototypical knowledge base management system has
been designed and implemented along these ideas. It has
been used, in various stages of achievement, for the
development of ColiGene and MultiMap, and is now
being used for the implementation of a complete
cooperative computer system for genome sequence
analysis. The collaborative part is in its beginning: a
prototype system is currently developed in our team
using the knowledge base management system TROPES
and KQML as a communication support.

ACKNOWLEDGEMENTS

This research is being supported by GREG
(Groupement de Recherches et d’Études sur les Génomes)
and by GdR CNRS «Informatique et Génomes» (CNRS:
Centre National de la Recherche Scientifique). The author
thanks Steve Jones, François Rechenmann and Jutta
Willamowski for their help.

REFERENCES

1. Carlos Alchourrón, Peter Gärdenfors, David
Makinson, On the logic of theory change: partial
meet contraction and revision functions, Journal of
symbolic logic 50(2):510-530, 1985

2. Chitta Baral, Sarit Kraus, Jack Minker, V.
Subramanian, Combining knowledge bases

153

consisting in first order theories, Computational
intelligence 8(1):45-71 1992

3. Laurence Cholvy, Robert Demolombe, Reasoning
with information sources ordered by topics, Proc.
6th international conference on artificial intelligence:
methodology, systems, applications, Sofia (BU),
pp151-162, 1994

4. Clarence Ellis, Simon Gibbs, Gail Rein, Groupware
— some issues and experiences, Communication of
the ACM 34(1):38-58, 1991

5. Jérôme Euzenat, Building consensual knowledge
bases: protocol, Internal report, INRIA Rhône-
Alpes, Grenoble (FR), 1995

6. Tim Finin, Richard Fritzson, Donald MacKay,
Robin MacEntire, KQML as an agent
communication language, Technical report CS-94-
02, University of Maryland, Baltimore (MD), 1994
(rep. in proc. 3rd CIKM, Gaithersburg (ML US),
1 9 9 4) [f t p . c s . u m b c . e d u :
/pub/ARPA/kqml/papers/cikm.ps]

7. Michael Genesereth, Steven Ketchpel, Software
agents, Communication of the ACM 37(7):48-53,
1994

8. Sylvain Grivaud, François Rechenmann, Navigation
dans les bases de connaissances associant objets et
hypertextes, Actes 1er Représentation par objets, La
Grande-Motte (FR), pp262-280, 1992

9. Thomas Gruber, Jay Tenenbaum, Jay Weber, Toward
a knowledge medium for collaborative product
development, in John Gero (ed.), Proc. 2nd.
international conference on artificial intelligence in
design, Pittsburg (PA US), pp413-432, 1992
[ksl.stanford.edu:/pub/knowledge-
sharing/papers/shade.ps]

10. Peter Karp, Michael Mavrovouniotis, Representing,
analyzing and synthesizing biochemical pathways,
IEEE Expert 9(2):11-22, 1994

11. Rob Kling, Cooperation, coordination and control in
computer supported cooperative work,
Communication of the ACM 34(12):83-88, 1991

12. William Kornfeld, Carl Hewitt, The scientific
community metaphor, IEEE transactions on man,
systems and cybernetics 11(1):24-33 (rep. technical
report AI-memo 641, MIT, Cambridge (MA US),
1981), 1981

13. Robert Kraut, Jolene Galegher, Carmen Egido,
Relationship and tasks in scientific research
collaboration, Human-computer interaction 3(1):31-
58, 1987

14. Olga Mariño, François Rechenmann, Patrice
Uvietta, Multiple perspectives and classification

mechanism in Object-oriented Representation, Proc.
9th ECAI, Stockholm (SE), pp425-430, 1990

15. K. Narayanaswamy, Neil Goldman, “Lazy”
consistency: a basis for cooperative software
development, Proc. 3rd CSCW, Toronto (CA),
pp257-264, 1992

16. Robert Neches, Richard Fikes, Tim Finin, Thomas
Gruber, Ramesh Patil, Ted Senator, William
Swartout, Enabling Technology for Knowledge
Sharing, AI Magazine 12(3):36-56, 1991

17. Christian Overton, Kimberle Koile, Jon Pastor,
GeneSys: a knowledge management system for
molecular biology, in G. Bells, T. Marr (eds.),
Computers and DNA, pp213-239, Addison-Wesley,
Reading (MA US), 1990

18. Guy Perrière, Christian Gautier, ColiGene: object-
centered representation for the study of E. coli gene
expressivity by sequence analysis, Biochimie
75(5):415-422, 1993

19. François Rechenmann, Building and sharing large
knowledge bases in molecular genetics, Proc.
KB&KS workshop (International Conference on
Building and Sharing of Very Large-Scale
Knowledge Bases), Tokyo (JP), pp291-301, 1993

20. Walter Reinhard, Jean Schweitzer, Gerd Völksen,
CSCW tools: concepts and architecture, IEEE
computer 27(5):28-36, 1994

21. Reid Smith, The contract net protocol: high level
communication and control in a distributed problem
solver, IEEE transactions on computers
29(12):1104-1113 (rep. in Alan Bond, Les Gasser
(eds.), Readings in distributed artificial intelligence,
pp357-366, Morgan Kauffman, San Mateo (CA
US), 1988), 1980

22. Mark Stefik, The next knowledge medium, A I
magazine 7(1):34-46, 1986

23. David Stodolsky, Consensus journals: invitational
journals based upon peer consensus, Datalogiske
Skrifter 29, 1990

24. Hidetoshi Takana, A private knowledge base for
molecular biological research, Technical report 811,
ICOT, Tokyo (JP), 1992

25. Jutta Willamowski, François Chevenet, François
Jean-Marie, A development shell for cooperative
problem-solving environments, Mathematics and
computers in simulation 36(4-6):361-379, 1994

26. Terry Winograd, A language/action perspective on
the design of cooperative work, Human-computer
interaction 3:3-30, 1987

