An architecture for selective forgetting

Jérome Euzenatl), Libero Maesano(?)

(1) Sherpa project, Laboratoire ARTEMIS/IMAG, BP53X, F-38041 GRENOBLE
(2) CEDIAG/Bull, 68 route de Versailles, F_'-7843O LOUVECIENNES

ABSTRACT

Some knowledge based systems will have to deal with increasing amount of knowledge. In
order to avoid memory overflow, it is necessary to clean memory of useless data. Here is a
first step toward an intelligent automatic forgetting scheme. The problem of the close

“relation between forgetting and inferring is addressed, and a general solution is proposed.

It is implemented as invalidation operators for reasoning maintenance system dependency
graphs. This results in a general architecture for selective forgetting which is presented in
the framework of the Sachem system.

INTRODUCTION

The generalized computerization of the organizations leads to a worrying amount of
stored data. The problem of forgetting is an old one: it is simply the ability to avoid
memory overflow by freeing it. Moreover, freeing memory does not only care for memory
overflow but also ensures good performances of data retrieving procedures. So, this
problem is critical for data management. Computer systems are yet able to exhibit forgetting
skills. In several programming languages, the programmer can use some instructions in
order to free the occupied memory. In more evolved languages, a garbage collection
mechanism is able to find out unworkable data that can be discarded from memory.
Concerning secondary storage, every operating system provides “remove file” commands
and every data base management system “remove record” ones. It is possible to go ahead in
the mechanization of forgetting and to put forth intelligent forgetting tools.

It is possible to consider a simple forgetting scheme (with or without archive of
forgotten data) for the future database systems. It can be a very basic system (banks must
keep information on transactions for ten years) or a more sophisticated and intelligent one.

Intelligent forgetting capabilities will be studied in a knowledge based system context
for reasons of declarativity of the knowledge expressed and of availability of exploitation
tools. The relations between forgetting and inferring will be especially accounted for: rather
than being a problem, they allow building a smarter forgetting scheme taking advantage of
inferences. It will be demonstrated through a real world application in which these ideas
were experienced. This study will not distinguish between primary and secondary storage
memory because it is concerned with very large applications that must reside in databases.

in: Luc Steels, Barbara Smith (eds.), AISB91 (proceedings of the 8th SSAISB conference on artificial intelligence
and simulation of behaviour), Springer-Verlag, London (GB), 1991



118

Forgetting will be considered together with knowledge base systems, and so, will
meet the problem of the relations between inferring and forgetting. These relations will be
dealt with through two attitudes: consolidation and abstraction.

Reasoning maintenance systems will be introduced in order to demonstrate the
implementation of these two attitudes. This will lead to the presentation of a complete
architecture for selective forgetting, together with a proposal enabling to determine what to
forget. This is presented through its application to a knowledge based system which
monitors a blast furnace process: Sachem.

It is worth noting that this work concerns artificial systems, and so, is not
preoccupied by psychological plausibility. Nevertheless, it obviously can and should be
related with psychological studies and psychological preoccupation in computer science.
This will be addressed in the last section.

FORGETTING AND INFERRING

When considering knowledge based systems, forgetting some datum must be
considered in connection with every other part of the base it is connected with. The
problem to be faced is that of the attitude toward the relation after forgetting: discarding
relations or discarding the related item (and so on...). Moreover, the relations can be of two
sorts:

+ Explicit relations can be found as references from an object to another. Knowledge
representations and, among them, object based knowledge representations allow for a
wide range of relations to be introduced in the base and a rich semantics associated with
each kind of relation (Kim & al., 1989; Escamilla & Jean, 1990).

» Implicit relations need computation in order to be established. This is the case for the
relations from classes to instances through the inheritance mechanism but also for every
deductive inference mechanism.

Only the relations between forgetting and inferring are discussed here. This will lead
to a safe and generic solution for this relation. A deductive relationship between datum to
forget and other data is twofold: a backward relation with other data that enabled to infer it
and a forward relation with data it allowed to infer. Both sides of the relation are discussed
below.

Backward references

Forgetting is not of logical concern. Logic tells us what interpretation can be given to
a set of facts while forgetting changes the set of facts considered. So, as for other problems
(reasoning maintenance for example), the justification of forgetting is to be found in
reasoning rather than logic. However, in order to insure a sound behavior of the system,
we want it to have a semantics that warrants that every item which can be inferred is
indeed. For that purpose, an inference system is required to infer every formula that is
inferable from a set of facts. So, the problem to be faced is that of the meaning of forgetting
inferred knowledge: the facts introduced into the database by the inference system. In fact,
after forgetting an item, it should be legitimate for the reasoner to infer it again, perhaps ad
infinitum. Moreover, forgetting the conclusions while the premises remain is not
appropriate: usually, the inference process is oriented toward inferring gradually more
relevant data, so, it is better to preserve relevant data while forgetting rough and less
relevant data. '



119

Our choice, consists in forgetting only what is called initial knowledge (i.e.
knowledge that the logical interpretation of the base considers as axioms). This is the price
to be paid for insuring a logical behavior of the system.

This accords with the observation that only more abstract data is inferred (through
true abstraction or aggregation); it is a suitable approach to forget initial knowledge rather
than more abstract knowledge. In fact, if the system is dedicated to infer abstract
knowledge (and this is mainly how the Sachem system behaves), it seems curious to forget
abstract knowledge while keeping at hand the initial knowledge that generated it.

Forward references

On the other hand, if one wants to forget initial data, (s)he may want to forget what
that data allowed to infer. In fact, there are two possible attitudes:

+ Forgetting data while leaving everything else unaltered, which will be called
consolidation. This can be used in order to forget initial data while preserving relevant
consequences of those data.

+ Forgetting data while leaving everything else as if the forgotten datum was in a
particular state (usually valid or invalid), which will be called abstraction.

It is noteworthy that the latter does not rely on a current state while the former does.

But those two possibilities are not independent: the former can be expressed by the latter
with the state conditioned by the actual state of the datum, the latter can be expressed by
changing the state of the datum before applying consolidation. Both attitudes allow for
logical interpretation: the forgotten data, which was axioms are not any more, and so their
consequences are invalid or become axioms in turn. However, the presented attitudes have
been stated in a very abstract fashion: even the forward references are not mentioned. It
must be instantiated in particular deductive systems.

These forgetting primitives are very interesting and must be provided, but their
implementation is not straightforward because axioms and consequences are not usually
explicitly related. The architecture presented below deals with such a problem, but first, the
implementation of the operators is introduced.

REASONING MAINTENANCE SYSTEMS

Reason maintenance systems (RMS) are aimed at managing a knowledge base
considering different kinds of reasoning. Such a system is connected to a reasoner (or
problem solver) which communicates every inference made. The RMS has in charge the
maintenance of the reasoner’s current belief base. Reasoning maintenance systems’
dependency graph will form the basis on which the operators can be implemented. So
reasoning maintenance systems are first exposed before showing how to implement
forgetting operators.

Dependency graph

RMSes record each inference in a justification that relates nodes representing
propositional formulas plus a special atom (L) representing contradiction. The system
accepts non monotonic inferences so the justifications have an appropriate structure: a
justification (<{iz,...in} {01,...0m}>: ¢) is made of an IN-list ({ij,...in}) and an OUT-list
({01,...0m}). Such a justification is said to be valid if and only if all the nodes in the IN-list
are known to hold while those in the OUT-list are not; a node, in turn, is known to hold if



120

and only if it is the consequent (c) of a valid justification. The recursion of the definition is
stopped by nodes without justification and by axioms that are nodes with a justification
containing empty IN- and OUT-lists.

Fig. 1. A dependency graph is here represented as a boolean circuit where or-gates are
nodes and and-gates are justifications where the nodes in the IN-list come directly while
nodes in the OUT-list come through a not-gate, Nodes that have a justification whose IN-
and OUT-lists are empty (e.g. D) represent true formulas because they do not need to be
inferred. White nodes and justifications are considered valid while hatched ones are
invalid. Of course, the value propagation satisfies the rules implied by the circuit
components. So, the formulas in the base are insured to have a valid justification (i.e.
corresponding to a valid inference).

TMS and ATMS

Jon Doyle’s TMS (for “truth maintenance system”; Doyle, 1979) proceeds by
labelling the nodes of the graph with IN and OUT tags which reflect whether they are known
to hold or not. A labelling respecting the constraints stated above is an admissible labelling
and a labelling which labels the node L. OUT is a consistent labelling. The TMS algorithm
finds a (weakly) founded labelling, i.e. a consistent admissible labelling which relies on no
circular argument. The main work of the TMS occurs when it receives a new justification. It
then has to integrate the justification in the graph and, if this changes the validity of the
formula, it must propagate this validity: all the nodes that could be IN-ed because of the
justified node and all those which could be OUT-ed are examined and updated. If an
inconsistency occurs following the addition of a justification, the system backtracks on the
justifications in order to invalidate a hypothesis — a formula inferred non monotonically —
which supports the inconsistency.

Johan De Kleer’s assumption-based TMS (Martins & Shapiro 1988; De Kleer, 1986)
is rather different. This system considers only monotonic inferences (with only IN-list:
<{i1,...in}>: ¢), but it deals with several contexts at a time. It considers initial formulas
called hypotheses; so, the user can generate and test hypotheses with great efficiency. A
set of hypotheses is called an environment and the set of all the environments constitutes a
complete lattice structured by the “includes” relation (cf. Fig. 2). Instead of labelling
absolutely a node (with IN or OUT tags), each node has a label consisting of the set of
environments under which it is known to hold. An environment is consistent if L is not
known to hold in it and the computed labels are minimal in the sense that they do not
contain comparable environments. After each inference, the system computes the set of
environments that support the inference, inserts it in the label of the inferred node and
propagates it through the graph. Then, in order to know if a formula is valid, it compares
the current hypothesis set with the label of the node.



121

Fig. 2. The environment lattice constructed with the hypotheses A, B and C in which the
environment {B, C} is known as inconsistent.

As a summary, the TMS handles non monotonic inferences and is able to maintain the
set of deduced formulas with regard to an axiom set. The axiom deletion, while not
explicitly described by Jon Doyle, is trivial to implement. The ATMS, for its part, cannot
accept non monotonic inferences, but is able to consider several contexts simultaneously.

Specialized graph operators

Reasoning maintenance systems record every inference, but, independently of
TMSes, the dependency graph constitutes a picture of the reasoning process and every
manipulation of this graph can be seen as meta-reasoning. It is then possible, for other
utilities, to take advantage of the graph. This is the case for:

+ explanation generation,
+ automatic inconsistency recovery (the task of backtracking),
+ forgetting.

The forgetting primitives will be implemented, at a low level, as dependency graph
procedures called inferential and influential invalidation that are run against a TMS node and
a justification in which it appears. The former enables forgetting the justification, and, the
latter forgets the effects of the node on the justification. Influential invalidation consists in
replacing the justification in which the node appears (in IN- or OUT-list) by another in which
the node no longer appears. Inferential invalidation suppresses the justification in which the
node appears. Then, the reasoning maintenance propagation process is run in order to
account for the change in the rest of the graph.

This last operation is not native in the ATMS (because it is a monotonic system), but if
the forgotten fact is a hypothesis the result of the propagation will consist in a simple
operation on the labels. Two logical concepts, called universal and existential abstraction,
have been established at the Bull research center (Coudert & Madre, 1990) and are the
simple quantification of boolean formulas by some variable (which ranges over 0 and 1). If
applied to the labels, considered as formulas in disjunctive form, these operators formalize,
in sentential calculus, the two possible operations of forgetting a fact with or without taking
care of its consequences. So, the propagation phase of these operators is implemented by
applying the relevant operator with the hypothesis to each consequence of the hypothesis.



122

Example
If anode X has for label {{A,B},(B,C},{A,D}} which can be expressed in sentential calculus
by (ALB)v(BA~C)(A~D) then
VB (AAB}{B.C).(A.D) (universal abstraction)
= [(A-D)I[(A)AC)(AD)]
= (A.D): {{A,D}] is its OUT-abstraction after B's forgetting and
3B (A..B)-(BAC).(A.D) (existential abstraction)
= [(A-D)v[{(A)(C)(A-D)]
= (AvC): {{A]}.{C)}]} is its IN-abstraction after B's forgetting.

Invalidation operators are far away from the consolidation and abstraction that were
introduced previously. Here is sketched their implementation in terms of invalidation. The
consolidation is not explained provided that it is straightforwardly adapted from
abstraction.

OUT-abstract(A) @
DI
m-absmm% " _ ' D

Fig. 3. Effect of abstraction on the dependency graph through invalidation operators,

The IN- or OUT-abstraction operators first check for the validity of the operation: the
data must be an axiom (or an hypothesis), i.e. it cannot have been inferred. Then, the
invalidation operators are called against the justifications in which the node appear. For IN-
abstraction, the influential invalidation is called against the justification in which the node is
in the IN-list and inferential invalidation against those in which it appears in the OUT-list.
For OUT-abstraction, it is exactly the opposite. At last, the node can be suppressed from the
node base.

Nevertheless, the invalidation operators are very powerless since they only allow the
forgetting of one node at a time. So, two additional procedures are provided that are called
recursive invalidation. They recursively apply invalidation to the consequences of the initial
fact, provided that the operation is also valid (the consequence has become in turn an initial
fact). It is noteworthy that these new operations necessitate only one propagation because
the additional operations respect the current logical interpretation.

SACHEM FORGETTING PROCESS

This approach to forgetting stems from a large real-time knowledge-based system in
which data comes from 800 sensors. This system diagnoses failures in the process of a
blast furnace. It must infer from rough data (coming from the sensors) higher level
representation of the process. From this representation, the system is able to make several
diagnostics. They are represented by assumptions of failure. The system will then observe
(or focus) on precise data in order to confirm, infirm or invalidate these hypotheses. Since
it works in real time, it must also decide how to act in order to recover from the failure.
These decisions take into account the irreversibility and the range of such actions and the
plausibility of the hypotheses that support them.



123

The application is written in the object oriented language KOOL (Lacroix, 1989)
enhanced with reasoning maintenance capabilities (Euzenat, 1989a). It uses objects for
representing data and hypotheses and rules for reasoning. The tasks of the system and their
schedule is described in Fig. 4.

Perception > Matchmg > Diagnostic —3>»| Decision 1 Forgetting
o>
= read-only acces
=P rcad-wrile acces

Real world —3> schedule

Fig. 4. Sachem general process.

The system receives large amount of data, and also constructs large amounts. This
leads to important storage requirements and forces forgetting a part of this data in order to
not overflow memory. The real-time constraint rules out the possibility of stopping the
system in order to clean memory. But, it is loose enough so it is possible to run a system
that will decide what to forget and thus free memory.

“What to forget?” versus “What to remember?”

There are two ways of achieving forgetting: the first one provides forgetting
operators to the user who has in charge the explicit liberation of space, the second one,
close to the garbage collector approach, uses a supervisor in order to decide what and when
to forget. Of course, the supervisor can be driven by specific rules. We decided to use the
second approach as shown by Sachem’s main cycle.

When required to free memory, computer systems are usually able to do it, if they are
told which places or which items to free. So, the whole problem of automating forgetting is
to tell the computer what to forget. The problem of finding “what to forget” has been
pointed out, but one can address the dual problem of “what to remember”, Both answers
are suitable in order to determine what to forget. The latter has been chosen for Sachem. It
consists of establishing a set of relevant data (called the focus of attention) and forgetting
everything which is not related to that set of data.

However, the problem of circumscribing that focus of attention is not solved. There
is no all-purpose method. The solutions can be some automatic methods such as declaring
initial data older than some date to be irrelevant, or heuristic methods, using inference upon
the current state of the process in order to decide what to remember,

In Sachem, both methods are used. Validity duration of data and hypotheses leads to
discarding them after some time or not discarding them before another time. The focus of
attention is also used; it is based on a numeric comparison of the concurrent diagnostic
hypothesis. They are assigned a plausibility factor which can change during their lifetime,



124

There is a bound under which an hypothesis is considered as no relevant any more: such an
hypothesis will not appear any more in the focus of attention, and equally for the initial data
that led to propose this hypothesis. Another approach, more domain dependent, is under
investigation: it consists of imitating the way an expert manages his own focus of attention
and necessitate special expert knowledge.

However, this problem is still open and a lot of different solutions can be considered.
Now, will be presented the architecture which allows a close integration of the mechanisms
provided so far. It is a general architecture and protocol that enable forgetting in knowledge
based systems.

A knowledge-based system architecture for forgetting

The software architecture of Sachem is made of three levels (Euzenat, 1989b). The
upper level is the fact base on which the inference methods can be run: this is the KOOL
object level. The medium level is a reasoning maintenance dependency graph, representing
each formula manipulated by the inference methods as a node and relating them by
justifications which represent inferences. The lower level is made of the data structures of
the implementation programming language (Lisp in this case). The novelty of the
architecture stems from the way it is used for forgetting.

focus of attention
N
tempepdiure#22 @ dia’gnosﬁc#l‘gljz/
\ . Fact
®* e . 7% 4 bes
sh ol !
M diggnostic 70

{ o—D—0 Dependency

N 73
SNV LIEE. VI,
(LLLLL L L L L L/ Implementaton
r L 2 L7 S S S LSS L LSS
NN NIELEEEEE, memaory
DTN SEEEEEEE,

Fig. 5. The three level architecture of Sachem. The arrows represent the propagation of
forgetting: from high level representations to lower levels (white arrows), from raw to
more abstract data (black arrows).

This architecture leads to a simple protocol for forgetting. The forgetting process, as
said above, is a high level mechanism, so it begins at the higher level by determining the
focus of attention. Every item that has to be forgotten is then discarded from the fact base
and a query for discarding it at the medium level is emitted. At the reasoning maintenance
level, the invalidation operators are provided which discard recursively the concerned facts
and their references from other structures. At the implementation language level, the
garbage collector is able to collect the free memory. Of course, the reasoning maintenance
level tells the knowledge base level to discard the consequences it has identified.



125

FORGETTING AS AN OPTIMIZATION PROCESS

Up to now, our preoccupations only relate to the computer implementation of
reasoning systems. But this work can be compared with more general ideas and theories
such as those on human cognitive forgetting,

Psychological insight

Psychology works distinguish between short term and long term memory (LTM). The
analogy with the work presented here can only be done with LTM. There are two main
models of retrieval in memory that account for forgetting (Tiberghein, 1987):

+ Interference theory in which the item to be found is inhibited by a reorganization of
memory (due to new information arrival).

« Context theory in which the storage context is so different to the retrieval context that the
retrieval procedures are unable to find the item.

Generally, psychological models of forgetting, more than storage failure, emphasize
retrieval failure. Storage failure, as opposed to retrieval failure, is non reversible and thus
more difficult to test safely. But, such models show that forgetting reveals the optimization
of the retrieval process: forgetting is the price to pay for retrieving quickly, almost every
time. The view of forgetting presented here, while it differs from the ones above, is also an
optimization, but a storage optimization. It also has its shortcomings: sometimes, items that
had been known by the systems are no longer remembered. While the current
psychological theories account for cognitive economy of processing, our forgetting
proposal concerns cognitive economy of storage (Lenat & al., 1979).

However, studies in psychology should be interesting for artificial intelligence if they
can show how workable part of memory is circumscribed: this could bring new ideas about
how to forget while insuring coherency of considered data.

Abstraction

There is previous work in artificial intelligence which uses psychological models in
order to build memory systems. For example, Roger Schank (Schank, 1982) considers that
forgetting of individual data is the consequence of its integration in a more general scheme
(in his case it was more general instances of scripts). This is also true in the psychological
context theory of forgetting that observe that if something is learned under a wide range of
contexts, the context does not matter anymore: the learned item is abstracted from the
context.

The abstraction concept can take this into account. Moreover, that concept can be
found in each context where a forgetting tool can be useful:

» Inreasoning, it is possible to forget initial data which allowed to infer more synthetic
and pertinent data. This approach can be related with the actual work on deepness level
of reasoning (Bonté & al., 1988) which can help to determine what can/must be
forgotten or not. :

+ In a scientific discovery perspective, every fact that is singular and contradictory with
the current theory is very active in memory because it has to be explained. When
explained with the help of a new theory, the abstraction, that the new theory represents,
remains while the singular fact is forgotten because it is not singular any more (it is just
an instance of the abstraction).



126

« In computer vision, pixels that constitute the input of the system are forgotten for the
benefit of edges which are themselves forgotten in objects’ advantage...

* In symbolic machine learning, when minimal and maximal representations of the
concept to learn are acquired, examples and counter-examples from which they are built
can be forgotten (this is the case of the restaurant-script example of Schank).

All of these categories can be taken into account in order to help choosing the items to
forget. For example, Sachem’s reasoning goes through several abstraction levels. The
possibility of several different forgetting politics tied to the different levels are currently
under study.

Of course, all these forgettlng actions must only be processed when the
infered/extracted/learned abstractions are strong enough. The forgetting action disables the
explanation of the abstraction processes. So the choice of the items to be forgotten must be
very careful.

As a conclusion, several concepts constructed for psychological purposes can be
confronted with the forgetting ability described here. While not inspired from them, the
contexts of ATMS share the same purpose with psychological contexts theory: reducing the
search space. Schank abstraction is the same as that which is used here. Moreover, the
understanding of forgetting schemes as an optimization can open some interesting artificial
intelligence perspectives such as using encoding and decoding schemes inspired of those
provided by psychological research (this is, of course, yet true for the computatlonahstlc
part of psychology, e.g. (Anderson, 1976)).

CONCLUSION

An “attitude” toward the relations between forgetting and inferring in knowledge
based systems has been presented. Through abstraction and consolidation operators,
forgetting can be safely dealt with. Moreover, it is possible, with the help of a reasoning
maintenance system, to implement those operators. This leads to a proposal for a generic
architecture which is suited to the purpose of forgetting and which has been implemented
for the Sachem application prototype.

The forgetting operators meet the meta-reasoning activity which is the work of the
reasoning maintenance system. At first sight, the action of forgetting can be seen as
antithetic with reasoning maintenance systems which recall every inference produced in
view to support defeasible reasoning. Moreover, reasoning maintenance systems seemed to
burden large applications with too much data. But, at last, they turned out to be of major
relevance when discarding an item must be propagated to its consequences.

The architecture presented here is a very generic one. Currently, many systems based
on the object principle are developed, including object-oriented databases. There is
discussions in order to know if these systems will be provided with garbage collectors or
explicit freeing operators. Our claim is that garbage collectors are better, but not as they are
currently understood. Classic garbage collectors are too low level tools for objects. In the
most part of object applications, each object is connected with the entire base and has a lot
of connections. So, it is not suited to ground the destruction operation on the lack of
connections that which will not be achieved often. It is necessary to define the criteria that
made an object “garbageable”. For that purpose, a generic system that has in charge to
apply the criteria to the objects in order to determine which object must be forgotten is
proposed. This is done, in Sachem, through the determination of the focus of attention.



127

Farther than deductive implicit relations, explicit relations such as those that are
definable in object based knowledge representations are actually under investigation. The
taxonomy of these relations will control the spreading effect of forgetting (e.g. relation of
composition or class-membership should lead to specialized forgetting policies).

Our architecture is designed for forgetting in a reasoning system. As mentioned
above, forgetting is useful in several contexts. We think that this architecture can be
generalized. In particular, reasoning maintenance systems can be applied, for several
reasons, to learning systems.

Forgetting is a major concern as far as data and inference memorization is used in
large applications. The starting research on that topic, especially if the efforts take into
account the yet available and foregoing results of psychology and logic, should lead to very
useful methodoelogical tools.

ACKNOWLEDGEMENT

This work was initiated when the first author was with CEDIAG. The authors are
grateful to Martin Strecker who pointed out some shortcomings in the first formulation of
these ideas. Of course, remaining ones are under authors responsibility.

REFERENCES

Anderson J. R. (1976), Language, memory and thought, Lawrence Erlbaum associates,
Hillsdale

Bonté E., Castaing J., Grandemange P., Grumbach S., Kayser D., Lévy F. (1988),
Description succincte d’un raisonneur 4 profondeur variable, proc. 8iémes journées
internationnales sur les systémes experts et leurs applications, EC2, Avignon, 117-
132

Coudert O., Madre J.-C. (1990), Logic over finite domain of interpretation: proof and
resolution procedures, Bull research center, Louveciennes (Research report)

De Kleer J. (1986), An assumption-based TMS, Artificial intelligence 28(2):127-162
Doyle I. (1979), A truth maintenance system, Artificial intelligence 12(3):231-272

Escamilla J., Jean P. (1990), Relationships in an object knowledge representation model,
proc. IEEE Conference on tools for artificial intelligence, Herndon, 632-638

Euzenat J. (1989a), Connexion KOOL/RMS, spécifications, CEDIAG/Bull, Louveciennes
(Internal report Sachem JE004)

Euzenat J. (1989b), Démonstrateur B: architecture et fonctionnement, CEDIAG/Bull,
Louveciennes (Internal report Sachem JE0O7)

Kim W., Bertino E., Garza J. (1989), Composite objects revisited, SIGMOD records
18(2):337-347

Lacroix V. (1989), KOOL: a reflexive representation language, proc. TOOLS 89, Paris,
309-321



"

128

Lenat D., Hayes-Roth F., Klahr P. (1979), Cognitive economy, Stanford university,
Stanford (Research report HPP-79-15)

Martins J., Shapiro S. (1988), A model for belief revision, Artificial intelligence 35(1):25-
79

Schank R. (1982), Dynamic memory, a theory of reminding and learning in computers and
people, Cambridge university press, Cambridge

Tiberghein G. (1987), Introduction aux concepts contemporains dans 1’étude de 1la mémoire
chez I’homme, in: Martial Van Der Linden, Raymond Bruyer (eds.), proc.
conference sur la neuropsychologie de la mémoire humaine, Société de
Neuropsychologie de Langue Frangaise, 2-31

e AfAER AR PR R



