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ABSTRACT: The qualitative time representation formalisms are considered from the viewpoint
of category theory. The representation of a temporal situation can be expressed as a graph and
the relationship holding between that graph and others (imprecise or coarser) views of the same
situation are expressed as morphisms. These categorical structures are expected to be
combinable with other aspects of knowledge representation providing a framework for the
integration of temporal representation tools and formalisms with other areas of knowledge
representation.
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Time and space representation are only one aspect of knowledge representation. It is thus useful to
place them in a wider context. Category theory which is widely used in programming language
semantics has been introduced in knowledge representation [AITK93] in order to account for the
relation of approximation between, on the one hand, a knowledge base and the modeled domain, and
on the other, the many achievements of that knowledge base. This notion of approximation
generalizes that of interpretation of classical logic in that it allows to take into account that a
representation can get closer — instead of exactly correspond — to the modeled domain. It seems that
this analysis can also be applied to time representation which combine several internal approximation
mechanisms: qualitative interpretation, discretizing and weakening (see figure 1).

Moreover, knowledge representation formalisms are more and more specialized. However, it is
expected that they can be combined in order to represent a complex domain (e.g. for adding temporal

extension to objects represented as W-terms [AITK93]) in such a way that their mathematical

properties are preserved. Once this has been achieved, the attention can turn to the interaction between
the formalisms in a particular application.

Category theory [BARRO90, PIER91, BORC94] deals with objects (characterized by their structure)
and morphisms (preserving the structure). This immediately expresses the notion of approximation of
one structure by another. Nonetheless, one of the advantages of category theory is its ability to model
the interactions between categories through a variety of operations. These operations can be used to
combine the independently designed knowledge representation schemes as soon as they are
characterized as categories.

The present communication is a first report on the rephrasing, in categorical terms, of the tools for
qualitative time and space representation. The theoretical advantage expected from such a
characterization is the expression of the relationship between a qualitative representation of a temporal
domain and:

1) a less precise qualitative representation of the same domain;

2) a “deductively closed” qualitative representation of the same domain;
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3) a coarser qualitative representation of the same domain.

The final aim of this work is the use of category theory for taking into account the relationship
between the qualitative representation of time and its quantitative interpretation. As a matter of fact,
there is an immediate relationship between quantitative representations at different scales, a far from
immediate relationship between discrete quantitative representations and an expected relationship
between granular qualitative representation and discrete quantitative representation (see figure 1).
Such a characterization would result in a standard notion of temporal representation combinable with
any other knowledge representation formalism.
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Figure 1. The relationship existing between different models of the same domain. It depends on the nature of the
representation (Quantitative/qualitative), its degree of simplification (Discrete — Granular) and the expressiveness of
the language used (Weak). Dashed arrows represent operations which can be achieved in many ways and pending arrows
those which can be applied to some type of representation providing a new representation of the same type. Note that
arrows and nodes are not categorical notation.

The remainder is a first attempt to settle the qualitative temporal (resp. spatial) representation of some
situation as an object and the relationship it enjoys with other representations as morphisms. It can
also be understood as an introduction by the example to categorical notions and their applicability to
artificial intelligence research. This first picture is under construction and by no means complete:
some of the concepts will have to be refined and others modified.

This short report is not self-contained: it introduces only minimal definitions (noted meta-definitions)
for categorical notions and does not introduce notions on qualitative time and space representation. A
first section introduces the qualitative interval representation as an object and considers various kind
of morphisms (points 1 and 2 above). Section 2 introduces qualitative granularity as a new kind of
morphism (point 3 above). For reason of space, section 3 and 4 are reduced and presents some other
potential application of category theory to the field.

1.Approximation in symbolic time representations

Qualitative representation of time (e.g. the interval algebra [ALLES3]) represents the temporal
situation as a complete directed graph whose nodes are temporal entities (e.g. intervals) and edges the
relationship between them. The set of temporal relationships considered can vary with the formalism

and is noted I" here (e.g. A3 for Allen relationships). These graphs are considered as the objects of a

category (§1.1). The notion of approximation can be modeled through various kind of morphisms
which are considered here (§1.2 and 1.3).

1.1.Time graphs

The representation of a temporal situation can be made of a graph (called I'-graph) whose nodes are
the temporal entities and whose edges are labeled with a sub-set of a set I

146



DEFINITION (I'-graph): A I'-graph A is a complete directed graph made of a set N4 of nodes and a set
EA of labeled edges <ni,l,ny> such that ny,nyENA, ni=ny, ICT and [=@. Moreover, for each
n1,12ENA such that n=n; there exists exactly one <nj,ln>EEA.

Such graphs are interpreted as a temporal situation in which the nodes are temporal intervals (places
in time) and the labels carry the set of possible temporal relations between the two connected
intervals. The constraint about non emptiness aims at ensuring that between any two intervals there is
always one possible temporal relation (as it is in time).

A less constrained definition of temporal graphs (made of the same set N4 of and a set EA of edges
such that for some distinct nodes n and ny in NA there exist several edges and for others there exists
no edge at all) can be straightforwardly normalized by having the only edge between the nodes being

labeled by the intersection of the labels of all the initial edges and T".

POSTULATE (temporal representation): the modeled domain can be represented by a I'-graph.

Any one will admit that this postulate is assumed by anyone using qualitative time representation.
1.2.More precise representation

A more precise representation of the same situation is understood as a representation with more nodes
and smaller labels on the edges. This is expressed through the notion of a I'-yx-morphism.

DEFINITION (I'-y-morphism): A TI'-x-morphism between two I'-graphs A=<NA,EA> and
B=<NB EB> is an injective map y such that:

e VnENA,y(n)ENB, and

o V<ny,lny>EEA, y(<ny,lny>)=<y(ny),l’ y(n2)> with I'Cl.

As defined the relationship between I'-graphs introduced by I'-x-morphisms is reflexive. Note that
the definition of graphs and morphisms could have been carried by a fixed set of nodes N thus only
the node labels would have changed through morphisms. This is not the case and henceforth, the
“operation” carried out by the morphism consist in (1) restricting the existing labels in the domain and
(2) adding new nodes and edges. Below this is simply called restriction.

CONSEQUENCE 1: For each I'-graph A there exists a I'-y-endomorphism ida, such that:
e VYneEN, ida(n)=n, and
*  Ve€E,ida(e)=e (with systematically [’=).
META-DEFINITION (Category): The structure made of:
1) a collection of objects;
2) a collection of arrows f:A—B (or morphisms) from an object A (domain) to an object B (co-
domain);
3) acomposition operation “o” assigning to each pair of arrows f:A—B and g:B—C a composite
arrow g o f:A—=C.
such that:
a) for each object A there exists an identity arrow: ida:A—A satisfying the identity laws: for any
arrow f:A—B,idgof=fand foidp =f.
b) the composition is associative: for any arrows f:A—B, g:B—C and h:C—=D,ho(gof)=(ho

g)of.
is called a category.
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We now prove that I'-graphs and I'-x-morphisms form a category.

PROPOSITION 2: The structure made of:
1) acollection of I'-graphs (called objects);
2) a collection of I'-x-morphism between these objects among which are the id 5 for each object
A;
3) an operator “0” corresponding to function composition;
is a category (called I'-x-category).

proof.
a) for any arrow f:A—B,idg o f =f and f 0 idp = f (property of the identity function);
b) for any arrows f:A—B, g:B—C and h:C—D,ho (g o f) = (h o g) o f (since the composition
of label restriction/node addition is possible and there is only one way to restrict node labels
and add new nodes such that a graph corresponds to another). O

This proposition only means that:
* the graph A is an empty restriction of itself, so the restriction of A to B is the same restriction
as that from A to A composed with that from A to B;
* there is only one way to restrict A to D which does not depend on the intermediate steps.

META-DEFINITION (initial object, terminal object): An object O is called an initial object if, for every
object A, there is exactly one arrow from 0 to A; an object 1 is called a terminal object if, for every
object A, there is exactly one arrow from A to 1.

PROPOSITION 3: There is an initial object in the I'-¢-category, the one with no nodes.

proof. for such an object, there is always a ['-y-morphism to any other object and since the restriction
is unique, this morphism is also unique. ¢)

If we consider the graphs carried by a set of nodes NV, then there also is an initial object which is the
graph with all edges labeled with I.

In temporal representation, the intuition behind the initial object is the representation which tells
nothing about the relationship between the objects. At the opposite, we would like to consider the
terminal object as the domain to be modeled. So, each I'-graph would be an approximation of that
domain. However, this has not been considered here (because non correct graph, with regard to that
domain, are allowed). A construction meeting that intuition can be found in [ATTKO93]. It consists in
restricting the category to these graphs which are an approximation of the modeled domain
representation (the category generated by it). Then the graph matching exactly the reality would be
terminal.

In addition, we can also define these objects which are not the domain of any morphism (but their
identity arrow). Such objects only have singleton labels (if we do not consider any addition of
nodes). They represent an instantiated situation which could be the modeled domain (which is such
an object from the postulate). As a matter of fact, all such graphs which are approximated by a
particular I'-graph exactly correspond to the models of (i.e. the possible real situations represented
by) this last graph.
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1.3.Constraint resolution

Preciseness seems a natural notion for I'-graphs. However, qualitative temporal systems are provided
with a deductive operation: the application of transitivity through Allen’s composition table
[ALLES83]. They allow the reduction of the edge labels (thus leading to a more precise I'-graph). The
deduction made is first shown as a morphism and then the intuition that the result of deduction is
more precise is established. So, a new kind of morphism: “is deductible through constraint
propagation from” is introduced.

DEFINITION (I'-8-morphism): A I'-8-morphism between two I'-graphs A=<NA EA> and
B=<NB EB> is an injective map vy such that:
e VnENA,y(n)ENB, and
o V<ni,lny>EEA, y(<ny,lnp>)=<y(n1),l’ y(n2)> such that I’ is deducible through constraint
propagation from A.

As expected, what is deduced is a more precise graph.

CONSEQUENCE 4: A I'-0-morphism is a I'-y-morphism (since the deduction process only reduces the
labels).

CONSEQUENCE 5: For each I'-graph A there exists a I'-0-endomorphism ida, such that:
e VYnEN, ida(n)=n, and
e Ve€E, ida(e)=e (since the labels are deducible from themselves).

PROPOSITION 6: The structure made of:
1) acollection of I'-graphs (called objects);
2) acollection of I'-d-morphism between these objects among which are the idp for each object
A;
3) an operator “0” corresponding to function composition;
is a category (called I'-0-category).

proof.
a) for any arrow f:A—B,idg o f = f and f 0 ida = f (since no reduction applied before or after a
reduction is always this last reduction);
b) for any arrows f:A—B, g:B—C and h:C—=D,ho (go f) = (h o g) o f (since, the deduction —
by successive application of the transitivity table — can be composed and there is only one
way to reduce the graph A directly to the graph D). ¢

This is also easily obtained by adapting the proof that deduction systems are categories (in which
objects are formulas and arrows are proofs) [BARR90] to the constraint satisfaction case:
e for any graph, there is an empty proof from itself (ida: A—A), and if there is a proof p of A
from B, then p o idg and idp o p are the same proof p;
e if there is a proof p of A from B, a proof q of B from C and a proof r from C to D, then, the
proofs obtained by chaining r o (q o p) and (r o q) o p are the same.

An attempt can be made for normalizing the graphs such that each graph is represented by its more
reduced form through constraint propagation. This can be achieved with the help of a functor
mapping each graph to its normal form (provided it is unique). The resulting category would be a
sub-category of the initial one.
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2.Granularity

The granular representation has been introduced in [EUZE93, 94]. It represents a qualitative temporal
situation in the same way as any original qualitative language. However, this representation can differ
from the “exact” one since it considers that, under a coarser grain, some objects do not exist anymore
(thus changing the labels of the remaining edges). These changes between two different granular

representations are defined by an operator | on the set of relations between temporal entities
[EUZE%4].

Thus, a granular representation is expressed as a ['-graph exactly as the exact representation and the
relationship between representations from different granularities is taken into account as a new kind
of morphism (I'-y-morphisms). These morphisms correspond to downward granularity change, thus
going from a coarse view of the situation to a finer one (with more objects).

DEFINITION (I'-y-morphism): A T-y-morphism between two I'-graphs A=<NA EA> and B=<NB EB>
is an injective map y such that:

e VneNA,y(n)ENB, and

o V<ni,lnp>EEA, y(<ny lny>)=<y(n),l’ y(n2)> such that I'C .

I'-morphisms do not prevent new nodes from appearing in the image I'-graph; this exactly models the
possible vanishing of objects through granularity change. It is also possible that two distinct objects
in the domain have the same image; this has an interpretation which is not developed here.

CONSEQUENCE 7: A I'-x-morphism is a I'-y-morphism (since, by [EUZE9S5, property (1)], /C| [ and
[’ can be chosen in /).

CONSEQUENCE 8: For each I'-graph A there exists a I'-y-endomorphism ida, such that:
e VYnEN, idp(n)=n, and
* VeE€E, ida(e)=e (since, by [EUZE9S, property (1)], IC|1.).

PROPOSITION 9: The structure made of:
1) A collection of I'-graphs (called objects);
2) A collection of I'-y-morphism between these objects (called arrows A | g of domain A and co-
domain B) among which are the idp for each object A;
3) An operator “o” corresponding to function composition (the symbol “-” used in [EUZE93, 94,
951);
is a category (called I'-y-category).

proof.
a) id satisfies the identity laws: idg 0 A g = A g and A g 0 idp = A| g (property of the identity
function);
b) for any arrows A g:A—B and B, c:B—C and €| p:C—D,|po(BlcoA|g)=(C{poBlc)o
A| g is obviously true owing to [EUZE95, property (5)].

There exists a particular I'-graph which represents the empty world (so coarse that no object in the
modeled domain is relevant). This object is initial.

PROPOSITION 10: T'-y-categories have an initial object O which is the I'-graph <@ ,(>.
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proof. obvious, through an empty I'-y-morphism from O to any other I'-graph and the impossibility
of having a morphism from a non empty graph to 0. O

Like in the previous section, there is no terminal object for I'-y-categories. This is caused by the
possibly infinite chain of new nodes that the granularity changes can add to the graphs. However, if
the categories are restricted to be generated by a particular domain restriction then the graph
representing the modeled domain should be a terminal object.

An important question would be if granularity changes and deduction can be freely interleaved.
However, we proved in [EUZE93, 94] that this is not generally the case.

3.Extension to spatial formalisms

The success of qualitative time representation has led to extensions toward spatial qualitative
representations. The more simple are those which considers the space as a Cartesian product of linear
representation (such as the one used for time [GUSG89]) or those which consider a space topology
as a weakening of the time algebra [EGEN92, RAND92]. These transformations of the formalism
has been used in [EUZE94, 95] for extending in a straightforward fashion the results of temporal
granularity to these space representations. These results can also be expressed in categorical terms
(respectively as products of categories and functors).

4. Towards quantitative models

All the temporal representations presented above are supported by an idea of a measurable reality. As
a matter of fact, a set of the real number intervals is the natural interpretation of these notions. Thus

further work should draw the connection between the I'-graphs and their possible models. This can

be achieved in the context of category theory (more simply than what have been done for A-calculus
for instance). The general mechanism for doing this is expressed as “A mathematical theory —
corresponding roughly to the definition of a class of mathematical objects — can be usefully regarded
as a category of a certain kind, and a model of that theory — one of those objects — as a set-valued
functor from that category which preserves the structure.” [Lawvere quoted in PIER91]. Once this
has been done it must be proved (for any kind of I'-morphism) that for any A and B I'-graphs, there

exists a I'-morphism y:A—B if and only if the set of models of A is included in that of B. This has
been used, for instance, in [LI95].

A dual way would consist in beginning with the domain to be modeled as the basic category and
defining morphisms from that domain (intervals of real numbers) to the I'-graphs. The scaling should
as well be characterized in this fashion (see figure 1) and be approximated by granularity.

5.Final note

Seeing the many possible representations of a temporal situation as approximations in the same
framework is the contribution of category theory to time representation. It allows to conceive these
representations in a uniform way.

This short presentation is subject to debate and some problems will have to be solved before to turn to
a full account of time representations including the quantitative approach and/as model theory. For
instance, as suggested by one of the reviewers, the treatment of graphs with empty labels is not
sound. Such graphs have been rejected here under the justification of avoiding inconsistent graphs.
However, there can be inconsistent graphs with no empty label. This is very problematic if one thinks
that graphs with empty labels can be deduced through constraint propagation from a valid graph. The
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rejection of graphs with empty labels has been retained here because such graphs are obviously
meaningless. The interpretation of morphisms being approximation, it would be peculiar to consider
that the description of any real situation (but that with nothing to represent) is an approximation of
something meaningless. Ruling out graphs with empty labels allows to preserve an (informal) idea of
potential minimality of the most accurate representation. However, the current situation is not
satisfactory.

The author would like to warmly thank the anonymous reviewers for their thoughtful remarks which
have not been completely taken into account here due to tight schedules.

References

[AITK93] Hassan AIT-KACI, Andreas PODELSKI, Towards a meaning of LIFE, Journal of logic
programming16(3-4):195-234, 1993

[ALLES3] James ALLEN, Maintaining knowledge about temporal intervals, Communication of the
ACM 26(11):832-843 (rep. in Ronald Brachman, Hector Levesque (eds.), Readings in
knowledge representation, Morgan Kaufmann, Los Altos (CA US), ppS09-521, 1985),
1983

[BARR90] Michael BARR, Charles WELLS, Category theory for computing science, Prentice Hall,
Hemel Hempstead (GB), 1990

[BORC94] Francis BORCEUX, Handbook of categorical algebra (2: categories and structures),
Cambridge university press, Cambridge (GB), 1994

[EGEN92] Max EGENHOFER, Khaled AL-TAHA, Reasoning about gradual changes of topological
relationships, Lecture notes on computer science 639:192-219, 1992

[EUZE93] Jérome EUZENAT, Représentation granulaire du temps, Revue d’intelligence artificielle
7(3):329-361, 1993

[EUZE94] Jérome EUZENAT, Granularité dans les représentations spatio-temporelles, Research
report 2242, INRIA, Grenoble (FR), 1994
[ftp:/ftp.imag.fr/pub/SHERPA/rapports/rr-inria-2242-?.ps.gz]

[EUZEOS] Jérome EUZENAT, An algebraic approach for granularity in qualitative space and time
representation, Proc. 14th IJICAI, Montreal (CA), 1995 to appear

[GUSG89] Hans-Werner GUSGEN, Spatial reasoning based on Allen’s temporal logic, Research
report TR-89-049, International computer science institute, Berkeley (CA US), 1989

[LI95] Renwei LI, Luis Moniz PEREIRA, Application of category theory in model-based
diagnostic reasoning (preliminary report), Research report TR-89-049, Universidad
Nova de Lisboa, Lisboa (PT), 1995

[PIER91] Benjamin PIERCE, Basic category theory for computer scientists, The MIT press,
Cambridge (MA US), 1991

[RAND92] David RANDELL, Zhan CUI, Anthony COHN, A spatial logic based on regions and
connection, Proc. 3rd KR, Cambridge (MA US), pp165-176, 1992

152



