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Abstract. Automatic classification may be used in object knowledge
bases in order to suggest hypothesis about the structure of the avail-
able object sets. Yet its direct application meets some difficulties due
to the way data is represented: attributes relating objects, multi-valued
attributes, non-standard and external data types used in object descrip-
tions. We present here an approach to the automatic classification of
objects based on a specific dissimilarity model. The topological measure,
presented in a previous paper, accounts for both object relations and
the variety of available data types. In this paper, the extension of the
topological measure on multi-valued object attributes, e.g. lists or sets,
is presented. The resulting dissimilarity is completely integrated in the
knowledge model TROPES which enables the definition of a classification
strategy for an arbitrary knowledge base built on top of TROPES.

1 Introduction

The global aim of our study is the development of a strategy for automatic taxon-
omy building within object knowledge bases. Methods for inferring taxonomic struc-
tures, or classifications, first appeared within the numerical taxonomy paradigm, in
statistics. Statistic classification is aimed at detecting regularities in sets of feature-
described individuals. Feature values, mainly numerical, are used to establish a prox-
imity function on individuals. The classification methods tend to group highly similar
individuals into clusters and, in some cases, organize clusters hierarchically. The au-
tomatic classification may be used to discover the conceptual structure of the specific
domain where data comes from [19].

Such structure-detecting methods may be useful for domains where large amounts of
data are processed, like databases and knowledge-based systems. In fact, the extraction
of structural knowledge from databases, in particular by means of clustering, is one of
the goals of the recently emerged data mining field [14].

Our own concern is the introduction of such techniques within object formalisms.
The classification task has to be carried out within the knowledge base, i.e. in the
context in which the data is stored and manipulated. Therefore, the complexity of the
object description languages has to be successfully dealt with.

The necessity of classifying more complex data motivated the constitution of the
conceptual clustering paradigm as an extension of numerical taxonomy in machine
learning [13]. In contrast to the statistical methods conceptual clustering ones work on
symbolic and structured data and put the emphasis on the constitution of intentional



descriptions, a concept, for each cluster. Various conceptual clustering methods on
different kinds of data description formalisms have been reported since: attribute-value-
like [8], first order logic [2] and graph formalisms [11]. Other approaches like concept
formation [10] or Bayesian classification [6] rely on probabilistic considerations about
feature values when grouping individuals.

For the purposes of object taxonomy inference, a proximity-based approach seems
to be well suited [3]. Therefore, a key problem to address is the definition of a proximity
model which fits object descriptions. This means, in particular, that the model should
be able to process the variety of object features and inter-object relations admitted by
the concrete formalism.

We propose a generic dissimilarity model, the topological measure, which is uni-
versally applicable both on features and relations. Its basic principle is the use of the
hierarchical structure of a domain to assess the proximity between domain elements.
The model has been presented in a previous paper [18].

In the present paper, the extension of the topological measure on multi-valued ob-
ject attributes is discussed. The paper starts by a motivating example of a domain
which illustrates some specific features of the object formalisms like complex objects,
rich data type sets and multi-valued attributes (Section 2). Then, for self-containment
purposes, we recall the definition of the topological dissimilarity (Section 3). We also
discuss the concrete functions in some typical cases of domain structure like nomi-
nal, ordinal, etc. Next, the extension of the topological dissimilarity on multi-valued
attributes, sets and lists, is introduced (Section 4). Finally, the integration of the mea-
sure within a concrete object model, TROPES, and its taxonomy building tool T-TREE
is presented (Section 5).

2 Motivating example

Electromyography is a set of electrophysiological technics which allow the neuro-
muscular diseases to be diagnosed. The electromyographic diagnosis is carried out from
a systematic acquisition of numeric and symbolic data. It is decomposed into a set of
well defined steps: formulation of hypotheses and specialized examination procedure
suited to the patient treated, evaluation of procedure results, validation or questioning
of the current hypothesis, elaboration of a conclusion. The domain of electromyogra-
phy (EMG) is broad, covering more than a hundred existing diagnoses, and about four
thousand tests of nervous or muscular structures.

The complexity of EMG examination procedure and the specific conditions in which
it is carried out (tests are painful and unpleasant for the patient) make the implemen-
tation of a decision support system for the physician quite useful. MYOSYS [20] is a
knowledge-based decision supporting system on EMG built on top of an object formal-
ism. The system has been designed to assist the physician in different tasks ranging
from symptom evocation to test choice. A base of already resolved EMG cases is in-
tegrated into MYOSYS. The way cases are modeled as complex objects is described
below.

2.1 EMG case model

When a real-world domain is modeled with object knowledge formalisms the domain
entities are represented as objects. Entity features are modeled by object attributes.
Attribute values belong to a specific domain, data type or object set.



In the EMG field, entities are divided into several concepts: EMG case, clinical
data, hypothesis, test, EMG conclusion, etc. The objects that represent entities of
the same concept are described through a fixed set of attributes. Thus, they form
homogeneous groups, we shall further call those groups object sorts. EMG object sorts
define attributes of various domain structure. For example, test results are mainly
numerical values: floats or integers, but may also be expressed as ordinals. Nominal
features are used to describe the general state of the examined anatomic structures,
while anatomic structures, i.e. muscles and nerves, themselves constitute hierarchical
domains. Moreover, normal values for tests are introduced in form of intervals.

The existing relations between domain entities are modeled through object-valued
attributes, as opposed to primitive attributes, describing features. For example, each
EMG case is characterized by its clinical data. In the model, the cl-data attribute
of the EMG case sort takes its values in Clinical data. Objects-valued attributes give
rise to compler objects. A sub-set of the EMG domain concepts together with their
relations are shown on Fig. 1. As it is shown on the figure, relations may associate an
entity to a group of other entities. Thus, an EMG examination includes several tests
and may lead to a set of final conclusions. One-many relations are modeled through
multi-valued object attributes which may be defined on primitive features as well (see
Section 4).

— simple
association
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Fig. 1. Some EMG domain concepts and relations among them.

Objects are organized in class taxonomies. A class represents a group of objects,
its instances. It is characterized in terms of the same attribute set as its instances.
Class attributes describe sub-domains to which the attribute values of instances should
belong. Usually, each object sort is assigned a class taxonomy. In the case of EMG,
some of the domain concepts like hypothesis, clinical data, conclusion are subject to
standardization so the underlying hierarchical structure is well known (see Fig. 2). In
contrast, the sets of EMG tests and EMG cases admit no hierarchical structure a priori,
since they are specific to a given physician or a hospital department. We tend to see
here, the utility of clustering methods: they may be applied to extract a meaningful
taxonomy from a set of objects, say EMG cases. The obtained structure can be useful
both for extracting the expert knowledge from data and for optimizing the object
storage.

In the following section, issues related to automatic classification of objects are
discussed.

2.2 Classification-related problems

The construction of meaningful object taxonomies requires an efficient means for
assessing objects. However, most of the numerical and conceptual clustering methods



are defined upon data representations which are much simpler than the above object
model.

First, only a small set of data types, though variable, are admitted in the description
of individuals. Compared to this, object formalisms use the whole variety of data types
they inherited from programming languages: integers, reals, strings, Boolean; as well
as other, less common types like date for example. Even more, some concrete object
models [5] do not limit the set of the admitted data types: new types may be imported
from outside. External types are introduced through an abstract data type (ADT), which
represents a minimal interface of type management primitives (identity predicate, order
predicate, etc.).

In addition, most of the existing clustering methods admit only primitive attributes
in the description of individuals. However, the relations between objects represent an
important part of the domain model. Thus, an object is characterized by the total set of
its attributes, both primitive and object-valued. Clustering with relational data within
a logical formalism has been studied in machine learning [2]. First attempts to adapt
the method on objects have been reported in [3], but no universal approach exists so
far.

Finally, objects are often described by means of multi-valued attributes. Such an
attribute is defined upon a basic domain, object sort or primitive type, through a
collection constructor, set or list. As collections may have variable cardinality, they
cannot be compared directly. Some work on multi-valued features has been done in
different fields within the frame of machine learning: in [12] the multiple associations
between individuals has been studied for concept formation purposes, whereas the
utility of set-valued primitive attributes in decision tree induction is discussed in [7].

For the purposes of object taxonomy building, a proximity-based strategy seems
to be a reasonable choice. It requires, however, the definition of proximity functions
which satisfies the following criteria. First, proximity between objects should depend on
each of their attribute values. In other words, the proximity function should take into
account all the kinds of object attributes, in particular the object-valued and multi-
valued ones. Next, each data type used in object descriptions has to be processed with
the highest possible precision. Finally, the overall object proximity should remain of a
low computational cost.

In the following, a dissimilarity model which meets the above requirements is pre-
sented. First, a generic function for single-valued object attributes is introduces. Then,
the function is extended on collections of both primitive values and objects.

3 Topological dissimilarity

Providing a set of individuals I with a dissimilarity measure means defining a
function d : T x I — R{, which satisfies, for arbitrary a,b € I: (i) d(a,b) > 0 (pos-
itiveness), (ii) d(a,a) = 0 (minimalness) and (iiz) d(a,b) = d(b,a) (symmetry). Most
often, the dissimilarity measures are calculated on the features of the individuals. For
this purpose, each feature is provided with a function to assess resemblances between
values. Usually, these are ad hoc functions tied to the feature types (e.g. nominal or
ordinal).

In the context of an object formalism with an extensible type system, i.e. where
user-defined types are possible to import, such an ad hoc approach fails. A possi-
ble remedy could be to include a primitive for value resemblance computation in the
mandatory interface for external types. For a representation formalism, this solution



seems to be rather restrictive. A reasonable alternative consists to define a generic
function which applies to all data types, both built-in and external, admitted by the
formalism. The function could be then overridden by a user-provided primitive, which
fits better a particular data type. The topological dissimilarity model represents such
a universal means for comparing members of a given domain. It is based on the fact
that all domains share a common structure. In fact, for a given object attribute of a
primitive domain D, the restrictions imposed by object classes on that attribute, let
us call them type expressions like in [5], define sub-domains of D. The set of type ex-
pressions on D are naturally provided with an inclusion relationship called sub-typing.
Sub-typing induces a partial order structure on D which is quite similar to the class
taxonomy on an object set (see [18]). We use the classification scheme (CS) model to
provide a formal description of the structural analogy between domains.

3.1 Classification Schemes

For the sake of compactness, we shall only insist on model’s basic components (see
[5] for details).

A classification scheme (CS) is defined over a domain, say D, provided with two
languages: Ly, of individuals, and L¢, of categories. Individuals are interpreted as
domain entities, whereas the categories have two different interpretations. The first one,
called abstract interpretation (I4), is the set of all entities the category may potentially
represent. The second one, namely the real interpretation (Ir), includes only elements
which are currently represented by the category. A tazonomy, with respect to one of
the interpretations, is a partially ordered set of categories whereby the order respects
the inclusion of interpretations. Now, a classification scheme S = (L¢,C, <&, <) is
composed of two taxonomies:

— (Le, <) respects Ia; < is called sub-categorization criterion.
— (C, <) respects Ir whereby C' C L¢ and < is called sub-categorization relation.

Both object sorts and primitive types may be seen as classification schemes. For
example, in the EMG domain the integer type, used to encode the age of a patient,
can be seen as a classification scheme. The admitted integer numbers constitute the
language of individuals whereas categories correspond to integer intervals. On Fig. 2,
the taxonomy of the classification scheme on the Clinical data sort is given. Categories
representing object classes are given their standard names. Individuals, i.e. objects of
the Clinical data sort, are drawn as rectangles and are attached to their most specific
categories.

A classification scheme of an object sort may be obtained as product of the classi-
fication schemes of the object attributes. Thus, the EMG test sort may be seen as the
product of all its attributes like test results, tested anatomic structure, test conclusion,
etc. The same holds for EMG case, EMG conclusion and Clinical data. The reverse
operation of the CS product is projection; it allows the separation of a sub-set of the
product factors.

The uniform representation of both object sorts and primitive types offered by the
CS model may be used in the definition of a proximity function. In the next section,
a dissimilarity measure (d : Ly x Lt — Ro™") is presented which is entirely based on
the taxonomy structure of a CS.
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Fig. 2. A possible taxonomy on Clinical data.

3.2 Basic model

The topological dissimilarity is made up of of two functions: a high level function,
dt, computed on the objects and low level function, § that accounts for the field values.

The low level function 6 is measured on the taxonomy of a given classification
scheme S = (L¢,C, <, <). It may be roughly described as the shortest path between
two individuals in the taxonomy. In fact, what is measured is the minimal sum of path
lengths over paths leading to a common category. Thus, given e; and ez in L; with
C* ={cle1, ez € Ir(c)}:

b(e1,e2) = miCn [dist(e1,c) + dist(es2, c)]
ceC*
where dist(e,c) is the number of intermediate categories between individual e and the

category c. The above function is further normalized:

(5(61, 62)

maXg, ,zocUcIg(c) (5($1, $2)

5(61, 62) =

The way § works is illustrated on the Clinical data taxonomy on Fig. 2. For example,
the topological dissimilarity between the couple of objects el and e2 which represent
symptoms of sensory and motor disorder respectively is 6(e1, e4) = 4 since the shortest
path between them is of length four. Since the maximal path-length in the above
taxonomy is seven (§(e1, e3) = 7), the normalized topological dissimilarity is §(e1, ed) =
4/7. Here are some other examples: 8(e1, e2) = 5/7, 8(e1,e3) = 1 and §(e2, e3) = 6/7.

Both 6§ and § are valid dissimilarity indices. Moreover, § may be extended to a
category dissimilarity (6. : C x ¢ — RJ).

The high level function d' is defined on a CS product, i.e. object sort, K of n direct
factors (attributes). For individuals, say e and e’, given with their corresponding unit
projections (attribute values) e; and e} (i =1...n):

d'k(e,€') = Aggrizi Xib(ei, ;)

where the Aggr is a generic aggregation operator and A; is the weight assigned to the
i-th attribute of K. Various instanciations are imaginable for this operator, for example
City bloc or other Minkowski metrics.



3.3 Concrete functions

Although defined on a graph structure, most often the computation of the topo-
logical measure does not require extensive graph search. In fact, for the most common
domain structures, the generic model coincides with well known functions which are
easy to compute directly on primitives included in the ADT. These functions are be
implemented to speed-up the computation.

For instance, on a nominal domain D, like strings or symbols, the topological
dissimilarity equals the reverse of the identity (6 = 1 — idp). In fact, the classification
scheme of such a domain is made up of all possible sets of elements, i.e. Lc = 27,
since there is no reason to distinguish some of them. Thus, for a couple of individuals
e1 and es, the nearest common category corresponds to the set {e1, e2}. Consequently,
all possible values for ¢ are 0 and 2 which yields after normalization 1 — idp.

When an ordinal domain D is considered, the categories can be intervals. Thus, the
taxonomy is made up of all intervals on D with interval inclusion as sub-categorization
relation. For a couple of values, § accounts for the number of intervals between each
value and the most specific common category. The latter is exactly the interval where
those values are bounds. With some elementary computation one may show that
6(e1,e2) =2 x abs(ord(e1) — ord(ez2)). Consequently,

Blen on) — abs(ord(e1) — ord(ez2))
bler,e) ord(mazx (D)) — ord(min(D))

Since based on discrete structures, the topological dissimilarity is impossible to
measure directly on a continuous domain. Therefore, we assume in this case 8 coincides
with the normalized real number subtraction.

The low-level topological function applies to object sorts provided a taxonomy is
available on them. In this case, the proximity between objects is assessed with respect
to their mutual position within the taxonomy. In other words, & deals with objects as
if they were atomic and no more products of attribute values. For example, when d* is
computed on a couple of EMG cases, 6 will be applied on each attribute. For a couple
of Clinical data objects associated to the EMG cases, the graph distance between them
within the taxonomy will be extracted by § as shown previously.

Disregarding object attributes means, in particular, that 8 explores the relational
structure of the object sort set at depth one. Thus, the value of d* on EMG cases
depends on the respective EMG tests, but not on the Test conclusions.

We deliberately chose a measure based on the taxonomy. As a matter of fact, the
existing taxonomy, created either manually or automatically, is a synthetic expression
of the object sort (conceptual) structure. If it is meaningful (if it is not, then the whole
modeling and/or clustering is meaningless), then a good dissimilarity approximates the
object proximities induced by the taxonomy.

4 Multi-valued types

Multiple associations between entities lead to characterizations in terms of value
collections instead of single values. For instance, chemical elements have several possible
valences. When elements are modeled, the set of valences is to be associated to each of
them. The nucleotide sequence associated to a gene is just another example.

Multiple associations are usually modeled through multi-valued object attributes.
A multi-valued attribute is defined on a basic type, by means of a constructor: set or



list. Constructors apply to both primitive and object-valued attributes. For example,
in the EMG domain, EMG case is assigned a set of tests.

When processing a multi-valued attribute difficulties arise due to the variable length
of the collections. In machine learning, for example, set-valued features are often en-
coded through a set of single-valued ones and only rarely processed in a direct way (see
[7] for a discussion).

4.1 Comparing collections

A generic dissimilarity model on multi-valued attributes should account for both
the pairwise member dissimilarity and cardinality differences. One may imagine an
exhaustive computation, leading to the average of all member pairwise dissimilarities.
However, the obtained measure is not minimal, i.e. its values on identical collections
are strictly non-negative.

In order for minimalness to be guaranteed, some preliminary selection of member
pairs is necessary. More precisely, the set of selected pairs must satisfy: (i) a collection
member may take part in at most one pair and (é7) the number of pairs is maximal.
Those conditions define a matching between collections which is maximal in cardinality.
In addition, we require the matching to minimize the total dissimilarity of the selected
pairs.

4.2 Set-valued attributes

Let S = {e1,e2,...ex} and S" = {e}, b, ...e;} be two sets over a basic domain D.
Let also 6p be a normalized dissimilarity measure on D.

Matching S and S’ in the way described above means resolving the problem of an
optimal matching in a weighted bipartite graph. Algorithms of O(n?) complexity for
the problem have been reported in [1].

Let Mopi(S,S") = {(ei,e})} be an optimal matching. When at least one of the sets
is non empty, the set dissimilarity between S and S’ may be defined as the average
over the total dissimilarity of the matching and the unmatched elements taken with a
maximal dissimilarity, i.e. 1.:

!
(ernelEMope (5,57 0D (Cir€5) + |1 = ]

8:(8,57) = max(l, k)

If both S and S’ are empty, then we set the result of the function to zero: §;(0,0) =
0. The obtained measure is a valid dissimilarity index, since it is positive, symmetric
and minimal.

For example, let S = {2,7,4,3,9} and S’ = {6,4,8,1} be sets constructed over an
integer domain D = [0, 10]. An optimal matching is Mo,:(S, S") = {(2, 1), (7,6), (4,4),(9,8)},
consequently §,(5,S’) = (3/10 + 1)/5 = 0, 26.

The 6, function applies successfully to object sets as well. Indeed, let S = {e1, e2,e6}
and S’ = {e4, e5} be two sets of EMG tests (see Fig. 2) associated to a couple of EMG
cases. Their dissimilarity is 65(S,S") = (8/7+1)/3 = 5/7 obtained with M,:(S,S’) =
{(ea, 1), (es,e6)}



4.3 List-valued attributes

In the case of lists, the collection is provided with a sequential structure. The new
structure implies some extra constraints for the matching procedure. Thus, for lists
L = (e1,e2,...ex) and L' = (e}, e5,...e;), a matching M;(L,L") = {(ei,e})} should
preserve the order induced by the lists. In other terms, M;(L, L") should satisfy:

V(e ej), (em, )i <m =j <n'

The new kind of matching is more complex than the previous one. In fact, the
sequential structure implies stronger dependencies between member pairs than in the
previous case. For instance, (e1,e5) € M; implies (ea,eb) € M; but also (e, e}) & M;.

The task may be evaluated in the following way. First, with no loss of generality
we may suppose k < [, the case k = [ being trivial. Then, for lists of different length
the matching we are looking for may be seen as a mapping from the shorter list, L,
to the longer one, L'. The number of all maps that preserve the list-induced order is
CF. In the worst case, this number is an exponential function of I. We use therefore a
branch-and-bound algorithm exploring the space of all possible matchings, i.e. k-tuples
on [1,1], in lexicographic order.

The initial solution is provided by a greedy heuristic algorithm which implements a
recursive divide-and-conquer strategy. At each step, it chooses the best pair, i.e. the one
of lowest dissimilarity, between all possible pairs. For a given element of the shorter list,
only matchings are considered which do not prevent other elements of the same list to
be further matched. Thus, for e; in L, only e}, e, 1, .., e;_;,,; will be taken into account.
Once the best pair is fixed, it is added to the matching, its elements are extracted from
their respective lists and each list is splited in two sub-lists: one to the left and one to
the right of the extracted element. The algorithm is recursively applied on both pairs
of respective lists; it stops with empty list. In the worst case, the complexity of the
above procedure is O(n?).

For example, let Ly = (5,3,6) and L} = (2,4,6,2,7) be lists on the integer domain
D = [2,12]. For this couple of lists, the heuristic algorithm will provide a matching
M; = {(5,2), (3,4),(6,6)} with total dissimilarity between matched elements of 4/10.
Now, when the branch-and-bound algorithm is applied with this initial solution, it will
rapidly find the optimal matching M., = {(5,6), (3,2), (6,7)} with total dissimilarity
of 3/10.

Thus, the matching computed by the heuristic algorithm provides quite a high
bound for the following search. Finally, the total dissimilarity between lists is completed
in order to take into account the unmatched elements. Let Mop:(L, L") = {(es, €})} be
an optimal matching obtained by the above procedure. With at least one non empty
list, the list dissimilarity between L and L' will be:

Z(ei,e’j)EMI(S,S’) ép(eiej) + |l — Kl

8L, L) = max(l, k)

Should both L and L' be empty, their dissimilarity is zero: §;(0, 0) = 0.

In the above example of integer lists, §;(L, L") = (3/10 + 2)/5 = 0,46 with M,
and 6,(L, L') = (4/10 + 2)/5 = 0, 48 with M,.

With object lists L = (e1,es) and L' = (es, es,e2) (see Fig. 2), and matching
Miopt(L, L'y = {(e1, e4), (€6, €2)}, the dissimilarity is §(L,L") = (9/7+ 1)/3 = 16/21.



5 Classification strategy

The topological measure represents an efficient tool for building a taxonomy within
an object formalism. However, in case of multiple object sorts and several taxonomies
to infer, the application of the measure, requires a specific strategy. In the following,
we describe the strategy we developed for the case of the TROPES knowledge model
[15].

In a TrROPES knowledge base, objects are instances of disjoint concepts. TROPES
concepts correspond to what we called object sorts: their instances share the same set
of attributes. Values of a given attribute belong to a specific data domain, either a
primitive data type or an object concept. Furthermore, the type system integrated to
TROPES supports encapsulated external types, introduced via abstract data types [4],
as well as multi-valued types.

The model has been provided with a taxonomy building tool, T-TREE [9] which
implements some numerical classification algorithms. Enhanced with the topological
measure T-TREE is able to process objects with no restriction and thus can infer
several taxonomies on disjoint concepts in the knowledge base.

In doing that, the set of concepts is considered as a graph. In fact, the knowledge
base may be considered as a graph where concepts and ADT are vertices and attributes
are edges (see Fig. 1 for a partial view on that structure). The obtained structure is
a directed acyclic graph since for the time being we excluded mutual dependencies
between concept characterizations. When classification has to be carried out on several
concepts the global principle is to process each concept only after all its subordinated
concepts, i.e. those related by object-valued attributes. In the case of the EMG do-
main, this means that if EMG cases have to be classified, then the EMG test concept
should first be provided with a suitable taxonomy. This amounts to exploring the graph
structure in a bottom-up manner, at each step inferring a taxonomy on a concept by
referencing the taxonomies on the concept attributes.

Such an exploration has the following advantages. First, both object features and
relations are taken into account, whereby the greatest attention is paid to the domain
structure of each attribute. Next, object relations are dealt with at a reasonable cost.
In fact, only direct attribute values are processed, their possible structure and further
relations remaining hidden. For example, when classifying EMG cases, each EMG tests
will be considered only as a member of its class in the test concept taxonomy. Finally,
the taxonomic structure discovered at a particular level is reused on higher levels.

6 Related works

A dissimilarity measure based on graph distance has been discussed in [16]. The
underlying measure is defined on a semantic net and accounts for the shortest path
between a couple of nodes. Link directions and nature are not considered. Compared
to that model, ours focuses on taxonomy, i.e. specialization links, and considers only
up-going paths.

In [3], a possible way to compare complex objects has been presented. The pro-
posed similarity function considers all relations between individuals to be reflexive and
transitive. Thus, the similarity of a couple of objects is assumed to depend on the
similarity of all related objects. When the model is applied to the EMG domain, for
example, the proximity of a couple of EMG tests is computed with respect to proximity
of the whole EMG cases, the EMG conclusions, etc. This additional information is not



unlikely to disturb the EMG test proximity assessment. It seems, therefore, that the
topological measure is better adapted to real-world domains where relations are mainly
non-reflexive. Yet both models should be compared experimentally in order to find out
which one is better.

Issues on inter-individual associations, matching and clustering with multiple in-
dividual sets have been addressed for the first time in [17]. The paper presents an
extension of the concept formation algorithm CoOBWEB [10] for structured domains.
A possible way to further extend the basic concept formation approach on multiple
associations between individuals is described in [12].

7 Conclusion

The automatic inference of object taxonomies is a special kind of analyzing data
and extracting implicit knowledge from it. A straightforward way to build object tax-
onomies is to use an automatic classification method on object sets. The detection of
meaningful object clusters requires a proximity measure which completely fits object
descriptions.

We described here such a measure, called topological dissimilarity. The topological
dissimilarity is a generic model which applies to any data domain used in object de-
scriptions. It allows to handle a variety of data types: nominal, ordinal, continuous,
etc. as well as to successfully explore the inter-object relations during classification.

Furthermore, we proposed an extension of the topological dissimilarity for multi-
valued attributes, sets and lists. which utility has been exemplified in the EMG domain.
The computation of a dissimilarity between collections requires a preliminary step of
matching between collection members. Strategies for matching sets and lists have been
discussed. The extended model is able to process primitive and object-valued attributes
as well as single and multi-valued ones.

Finally, we presented a strategy for taxonomy inference based on the extended
topological dissimilarity. The advantages of the described strategy are multi-fold: (7)
classification is carried out directly within the knowledge base, (i) the domain structure
of different data types is respected and (i:7) the existing taxonomies on object sorts
are reused in the construction of new taxonomies on other sorts.

This new measure has been integrated into the taxonomy building module of the
TROPES system and is currently under evaluation. Its comparison with other measures
is a subject of future works and shall include studies on several fields of application.
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