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Abstract. System-on-chip verification is an active research area. Of par-
ticular interest is protocol conversion, where two components with dif-
ferent protocols are controlled to communicate accurately. We present
an approach to protocol conversion using model checking. The temporal
logic ACTL is used to describe desired behaviour and finite state ma-
chines are used for protocol description. We use tableau-based converter
construction and prove that a converter exists only when a successful
tableau can be constructed. Liveness is incorporated so that converters
satisfy additional constraints on protocol communication. A NuSMV-
based implementation has been created and we present results on various
problems including a large NuSMV example.

1 Introduction

A System-on-a-chip (SoC) integrates components of a computer system into a
single chip with various hardware and software components connected using a
central bus such as AMBA [8]. SoC verification is an active area of interest and
verification strategies are based on data-flow and/or control-flow analysis of the
system. The focus of this paper is protocol conversion for mismatched protocols
[13]. Although physical connectivity (interconnection using physical channels)
between components can generally be achieved, logical connectivity, where pro-
cesses communicate in the desired fashion, cannot always be guaranteed [13].
A mismatch occurs when processes fail to be logically connected. The aim of
protocol conversion is to synthesize extra glue-logic, called a converter, to con-
trol mismatched protocols to reconcile mismatches. A converter can control the
communication between protocols by employing strategies such as event hiding

[13], event translation [5] and inhibition [16]. The automatic generation of a con-
verter is known as converter synthesis whereas convertibility verification focuses
on establishing whether protocols are mismatched and whether a converter ex-
ists. Fig. 1 gives an overview of protocol conversion where a converter controls
two protocols P1 and P2 to satisfy given specifications.

We present a technique using model checking for automatically synthesizing
a converter. Protocols, in our setting, are represented using Kripke Structures

(KS) [7] and the desired properties of the combined protocols are represented
using temporal logic ACTL, a branching time temporal logic with universal path

SLA++P 2007 Preliminary Version 3
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Specifications

ConverterP1 P2

Fig. 1. Protocol conversion

quantifiers. The logic is particularly interesting and relevant for protocol con-
version as mismatches in protocols must be addressed for every path of their
KS descriptions. Given two KSs P1 and P2 and a set of desired properties in
ACTL, Ψ , the protocol conversion via converter synthesis problem (illustrated in
Fig. 1) is equivalent to checking for the existence of a converter under which the
protocols satisfy all formulas in Ψ .

Central to our technique is the construction of a tableau where satisfaction
of Ψ by the protocols and the converter is defined in terms of the satisfaction
of its subformulas (similar to [2]). The tableau construction also results in the
synthesis of a converter as the protocol-composition states are explored along
with the subformulas of the desired property. The technique leads to local and on-
the-fly construction of the converter, one where the state-space of the protocols
and the subformulas of the property are explored and expanded as and when
needed. In fact, in the event there exists no converter, i.e., the protocols cannot
be matched (hard mismatch [10]), our tableau-based technique can potentially
identify the failure without exploring the state-space that is irrelevant for failure
inference.

The main contributions of this paper are summarized as follows:

– We present a temporal logic based formulation for protocol conversion where
temporal logic formulas in ACTL are used to specify the desired communica-
tion between participating protocols.

– A tableau-based technique for identifying a converter, if one exists, as a glue-
logic between composed protocols to reconcile the protocol mismatches and
ensure that the desired specifications are satisfied. The tableau is sound and
complete and the converter, thus synthesized, is correct by construction.

– The tableau-based technique describes a local and on-the-fly algorithm for
converter synthesis—one where the state-space of the protocols being com-
posed are explored only as and when needed to prove or disprove the exis-
tence of a converter. The algorithm is polynomial in the size of the partici-
pating protocols and the given specifications.

The rest of this paper is organized as follows. We summarize works related
to our approach in section 2 and provide a motivating example in section 3.
The problem of protocol conversion is described in section 4 and we provide
our proposed tableau-based protocol-conversion approach in section 5. Section
7 presents implementation results with concluding remarks in section 8.
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2 Related Work

A number of techniques have been developed to address the problem of pro-
tocol conversion using a wide range of formal and informal settings with vary-
ing degrees of automation—projection approach [13], quotienting [5], conversion
seeds [15], synchronization [17], supervisory control theory [11], to name a few.
Some techniques, like converters for protocol gateways [3] and interworking net-
works [4], rely on ad hoc solutions. Some approaches, like protocol conversion
based on conversion seeds [15] and protocol projections [13], require significant
user expertise and guidance during converter construction. While this problem
has been studied in a number of formal settings [10, 13, 15, 17], only recently
have some formal verification based solutions been proposed [16, 8, 11, 9].

The closest to our approach are [16, 8]. In [16], the authors present an ap-
proach towards protocol conversion using finite state machines to represent par-
ticipating protocols as well as specifications employing a game-theoretic frame-
work to generate a converter. This solution is restricted only to protocols with
half-duplex communication between them. D’Silva et al [8] present synchronous
protocol automata to allow formal protocol specification and matching, as well
as converter synthesis. The matching criteria between protocols are based on
whether events are blocking or non-blocking and no additional specifications can
be used. The approach allows model checking only as an auxiliary verification
step to ensure that conversion is correct.

In contrast to the above techniques, we use temporal logic to represent de-
sired functionality of the combined protocols. Being based on temporal logic,
our technique can define desired properties succinctly and with a higher-level
of granularity. For example: a desired behavior of the combination may be se-
quencing of events such that event a in protocol P1 always happens before event
b in P2. Also, as our technique is based on the (tableau-based) model checking
algorithm, the converter synthesized is correct by construction.

The presented approach is similar to the synthesis of discrete controllers with
temporal logic and Control-D system [1]. However, the approach in[1] generates
controllers that can only perform disabling, i.e, transitions in the underlying
system can be disabled that lead to the eventual failure of given CTL formulas.
Additionally, the approach does not handle liveness properties. On the other
hand, converters generated using our approach not only perform disabling, but
they can also buffer events for later use in the communication of the proto-
cols. Additionally, the synthesized converters can generate extra control signals

expected as input by one protocol but not emitted by the other, in order to
lead the communication between the protocols to states that conform to given
specifications.

3 Illustrative Example

We motivate our approach using the following example. Fig. 2 shows the com-
munication protocols of two devices, a producer and a consumer, which need to
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Fig. 2. The producer-consumer protocol pair. (a) Producer P1, (b) Consumer P2.

communicate with each other. In its initial state s0, the producer protocol P
emits a request (req) and makes a transition to state s1. In s1, an acknowledge
input (ack) is expected immediately. In case ack is not available, a transition
to the error state s2 is made. In case ack is available, a transition to state s3 is
made where one packet of data is produced (denoted by the D Out label). From
s3, the producer resets back to its initial state s0.

The consumer protocol P2 operates as follows. In its initial state t0, the
consumer awaits a request from the producer protocol. Once a request is received,
a transition to state t1 is made. In state t1, an acknowledge signal ack is emitted
and a transition to state t2 is made. In t2, a packet of data is read (denoted by
the label D In) and a transition back to the initial state is made. Note that an
event a represents an input whereas a represents an output. We specify their
desired behaviour using the following ACTL formulas:

1. AG¬Error: The communication never enters a state labelled by Error.
2. AG [D Out⇒ ( D In ∨ AXA(¬D Out U D In) )]: Each data packet emitted

by the producer is read by the consumer before another data packet is emit-
ted (no loss).

Given the producer-consumer protocol pair in Fig. 2, it is possible that the
unrestricted behavior of the protocols may lead to states that fail to satisfy
the above properties. We formalize our solution to resolve these issues in the
following sections.

4 Preliminaries

Model of Protocols: Kripke Structures. Protocols are described using Kripke
structures as follows:

Definition 1 (Kripke Structure). A Kripke structure (KS) is a finite state

machine represented by a tuple 〈AP , S, s0, Σ, R, L, 〉 where AP is a set of
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atomic propositions; S is a finite set of states; s0 ∈ S is the initial state; Σ is a

finite set of events; R ⊆ S ×Σ × S is the transition relation; and L : S → 2AP

is the state labelling function.

We consider that the transitions in a Kripke structure trigger with respect
to a clock. At each clock cycle, the KS checks for the presence of input/output
events that can trigger a transition from the current state. If no input/output
triggers are present, the transition using the event T (or T ′) is made. In case there
is no T or T ′-transition, the protocol remains in the current state. The relations
(s, a, s′) ∈ R will be represented by s

a

−→ s′. Given two KS P1 and P2 using a
shared clock, their combined behavior is given by their parallel composition as
follows:

Definition 2 (Parallel Composition). Given two Kripke structures P1 =
〈AP1, S1, s01 , Σ1, R1, L1〉 and P2 = 〈AP2, S2, s02 , Σ2, R2, L2, 〉, their parallel

composition, denoted by P1||P2, is 〈AP1||2, S1||2, s01||2
, Σ1||2, R1||2, L1||2〉 where

AP1||2 = AP1 ∪ AP2; S1||2 = S1 × S2; s01||2
= (s01 , s02); and Σ1||2 ⊆ Σ1 ×Σ2.

R1||2 ⊆ S1||2 ×Σ1||2 × S1||2 such that

(s1
σ1−→ s′

1
) ∧ (s2

σ2−→ s′
2
) ⇒ ((s1, s2)

(σ1,σ2)

−→ (s′
1
, s′

2
))

Finally, L1||2((s1, s2)) = L1(s1) ∪ L2(s2).

We restrict the scope of this paper to protocols that can be represented as
deterministic Kripke structures only. A Kripke structure is deterministic if and
only if for all states s, the number of outgoing transitions on any event a is less
than equal to 1. The parallel composition of P1 and P2 in Fig. 2 (assuming a
shared clock) is P1||P2 and is shown in Fig. 3.

Model of Specifications. ACTL is a branching time temporal logic with universal
path quantifiers. It is defined over a set of propositions using temporal and
boolean operators as follows:

Ψ → P | ¬P | tt | ff | Ψ ∧ Ψ | Ψ ∨ Ψ | AXΨ | A(Ψ U Ψ) | AGΨ

Semantics of an ACTL formula, ϕ denoted by [[ϕ]]M are given in terms of set
of states in a Kripke structure (or a KS), M , which satisfies the formula (see
Fig. 4). A state s ∈ S is said to satisfy a ACTL formula ϕ, denoted by M, s |= ϕ,
if s ∈ [[ϕ]]M . Typically, the context of the semantics, i.e., M in [[ ]]M is implicit,
and omitted. We also say that M |= ϕ to indicate M, s0 |= ϕ. In this paper, we
restrict ourselves to formulas where negations are applied to propositions only.

4.1 Protocol Converters

The composition P1||P2 (Fig. 3) represents the unconstrained behaviour of the
protocols including undesirable paths introduced due to mismatches. A converter
is needed to bridge the mismatches appropriately. In this section, we introduce
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Fig. 3. Unrestricted composition of producer-consumer protocol pair: P1||P2.

converters and also the control actions of a converter (such as event blocking,
event buffering and generation of extra signals) by introducing a new composition
of the participating protocols with the converter.

Definition 3 (Converter). A converter C for two protocols P1 and P2 is a

Kripke structure 〈AP
C
, S

C
, s

C0, ΣC
, R

C
, L

C
〉 such that AP

C
= ∅ and Σ

C
=

(Σ1 ×Σ2) ∪ {(∗, ∗)}.

In the above, the event-element (∗, ∗) is a wild-card event tuple, short-hand form
of denoting any event-pairs from Σ1 ∪Σ2. The composition of a converter with
the protocols is performed using the following rule: inputs to (outputs from)
a protocol are outputs from (inputs to) the converter, i.e., the participating
protocols communicate via the converter which acts as an intermediary. Input
and output on the same event are duals and we will say that D(a, b) evaluates
to true if a = σ (σ̄) and b = σ̄ (σ) or if either a and/or b is the wildcard event

8 SLA++P 2007 Preliminary Version
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1 : [[p]] = {s | p ∈ L(s)} 2 : [[¬p]] = {s | p 6∈ L(s)} 3 : [[tt]] = S 4 : [[ff]] = ∅

5 : [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]] 6 : [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]

7 : [[AXϕ]] = {s|∀s −→ s′ ∧ s′ ∈ [[ϕ]]}

8 : [[A(ϕ U ψ)]] = {s|∀s = s1 −→ s2 −→ . . . ∧ ∃j.sj ∈ [[ψ]] ∧ ∀i < j.si ∈ [[ϕ]]}

9 : [[AGϕ]] = {s|∀s = s1 −→ s2 −→ . . . ∧ ∀i.si ∈ [[ϕ]]}

Fig. 4. Semantics of ACTL

∗. We extend D to operate on pairs of signals, where D((a, b), (c, d)) evaluates
to true iff both D(a, c) and D(b, d) evaluate to true.

After establishing the i/o relationship between a converter and the partic-
ipating protocols, we now define the control of a converter over the protocols
using the // operator as follows.

Definition 4 (Lock-Step Converter Composition). Given the KS P1||P2 =
〈AP1||2, S1||2, s01||2

, Σ1||2, R1||2, L1||2〉 and a converter C = 〈AP
C
, S

C
, s

C0, ΣC
,

R
C
, L

C
〉, the lock-step composition C//(P1||P2) = 〈AP1||2, SC//(1||2), s0C//1||2

,
Σ1||2, RC//(1||2), LC//(1||2)〉 such that:

1. S
C//(1||2) ⊆ S

C
× S1||2;

2. s0C//1||2
= (s0C , s0(1||2)

);

3. R
C//(1||2) ⊆ S

C//(1||2) × Σ1||2 × S
C//(1||2) where s

C//(1||2)

(σ1,σ2)

−→ s′
C//(1||2)

∈
R

C//(1||2) when













s
C

σ
c
1,σ

c
2−→ s′

C

∧ s1||2
(σ1,σ2)

−→ s′
1||2

∧

D(σc

1
, σ1) ∧ D(σc

2
, σ2)













⇒ s
C//(1||2)

(σ1,σ2)

−→ s′
C//(1||2)

4. L
C//(1||2)(sC , s1||2) = L1||2(s1||2)

The transition relation of the protocols composed with a converter ensures that
protocols move only when the converter allows that move. As such the lock-step
composition // is different from unrestricted composition (Definition 2).

5 Tableau-Based Protocol Conversion

Protocol conversion, in addition to reconciling the mismatches, also requires that
certain desired behavior is exhibited by the composition of the participating pro-
tocols. These desired functionalities are described by a set of ACTL formulas. We
will denote this set as Ψ . The converter synthesis problem for protocol conversion
is, therefore,

∃C : ∀ϕ ∈ Ψ : C//(P1||P2)
?

|= ϕ

SLA++P 2007 Preliminary Version 9
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I.e. is there a converter C for P1 and P2 such that the given protocols in the
presence of C conforms to all the properties defined by formulas in Ψ?

We present a tableau-based technique for performing protocol conversion
using ACTL specifications. This technique has the following advantages:

1. Local exploration of state-space of the protocols: the protocol transition
systems are explored as and when needed to prove or disprove the existence
of a converter.

2. On-the-fly synthesis of converter: generation of the tableau results in the
generation of a converter if such a converter exists.

3. Sound and complete: a converter generated using the tableau is correct by
construction.

The tableau rules are of the following form:

c//s |= Ψ

c1//s1 |= Ψ1 . . . cn//sn |= Ψn

where s is a state in P1||P2 and s1, s2, . . . , sn are a function of s, while c1, c2, . . . , cn
are the states of the converter to be generated. Similarly, Ψ is the set of formu-
las to be satisfied by s whereas Ψ1, Ψ2, . . . , Ψn are some derivatives of Ψ . The
numerator represents the obligation to be satisfied, i.e., s in the presence of a
converter state c must satisfy the set of formulas in Ψ and in order to realize
that, each obligation in the denominator must be fulfilled.

The tableau is initiated by a tableau-node resulting from the composition of
the start state of the unrestricted composition of P1 and P2 and a generated
start state c0 of a possible converter. The construction proceeds by matching
the current tableau-node with the numerator of a tableau rule and obtaining the
denominator which constitutes the next set of tableau-nodes. Fig. 5 presents our
tableau-rules for converter synthesis and protocol conversion.

The rule emp corresponds to the case when there is no obligation to be satis-
fied by the composition; any converter is possible in this case, i.e., the converter
allows all possible behavior of the protocol composition at state s.

The prop rule states that a converter is synthesizable only when the obliga-
tion of satisfying the proposition is released by the protocol composition state
s; otherwise there exists no converter. Once the propositional obligation is met,
the subsequent obligation is to satisfy the rest of the formulas in the set Ψ .

The ∧-rule states that the satisfaction of the conjunctive formula depends
on the satisfaction of each of the conjuncts. The ∨-rules are the duals of ∧-rule.
The Rule unrau depends on the semantics of the temporal operator AU. A state
is said to satisfy A(ϕ U ψ) if and only if it either satisfies ψ or satisfies ϕ and
evolves to new states each of which satisfies A(ϕ U ψ). These equivalences can
be directly derived from the semantics of AU formulas. Similarly, AGϕ is satisfied
by states which satisfy ϕ and whose all next states satisfy AGϕ (Rule unrag).

Finally, unrs is applied when the formula set in the numerator Ψ consists
formulas of the form AXϕ. Satisfaction of these formulas demands that all next
states of the c//s must satisfy every ϕ where AXϕ ∈ Ψ , i.e., c//s satisfies all
elements of ΨAX .
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emp
c//s |={}

• prop
c//s |= [{p} ∪ Ψ ]

c//s |= Ψ
p ∈ L(s) ∨ |= p

∧
c//s |= [{ϕ1∧ϕ2} ∪ Ψ ]
c//s |= [{ϕ1,ϕ2} ∪ Ψ ]

∨1

c//s |= [{ϕ1∨ϕ2} ∪ Ψ ]
c//s |= [{ϕ1} ∪ Ψ ] ∨2

c//s |= [{ϕ1∨ϕ2} ∪ Ψ ]
c//s |= [{ϕ2} ∪ Ψ ]

unrau
c//s |= [{A(ϕ U ψ)} ∪ Ψ ]

c//s |= [(ψ∨(ϕ∧AXA(ϕ U ψ))) ∪ Ψ ]

unrag
c//s |= [{AGϕ} ∪ Ψ ]

c//s |= [(ϕ∧AXAGϕ) ∪ Ψ ]

unrs
c//s |= Ψ

∃π⊆Π. (∀σ∈π. cσ//sσ|=ΨAX)

{

ΨAX = {ϕk | AXϕk ∈ Ψ}

Π = {σ | (s)
σ

−→ (sσ)}

cσ = c′ : c
σ′

−→ c′ ∧ D(σ, σ′)

Fig. 5. Tableau Rules for converter generation

Note that unrestricted behavior of the protocol (where c allows all the tran-
sitions from s) may not be able to satisfy this obligation; however, a converter
can be generated such that c allows a subset (π) of all possible transitions from
s (Π) and these transitions lead to states which satisfy the formulas in ΨAX (as
stated by the unrs rule). If there are k outgoing transitions from s, there are 2k

choices; however, the tableau considers k choices (one for each successor) and
unrs leads to k possible denominators–one denominator per transition from s.
These choices can then be aggregated to represent all enabled transitions of s.
Any denominators that return failure result in the corresponding successors of
s being disabled by the converter1.

Finitizing the tableau. It is important to note that the resulting tableau can be
of infinite depth as each recursive formula expression AU or AG can be unfolded
infinitely many times.

This problem arising due to unbounded unfolding of the formula expres-
sions can be addressed using the fixed point semantics of the formulas AGϕ and
A(ϕ U ψ). The former is a greatest fixed point formula while the later is a least
fixed point formula.

AGϕ ≡ ZAG =ν ϕ ∧AXZAG,
A(ϕ U ψ) ≡ ZAU =µ ψ ∨ (ϕ ∧AXZAU)

1 However, instead of examining all possible subsets, it is sufficient for the converter
state c to allow just one transition from s such that c′//s′ satisfies all formulas in
ΨAX , although such a converter may be too restrictive.
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Fig. 6. The combined system C//P1||P2 (Figures 2 and 3).

The greatest (least) solution for ZAG (ZAU) is the semantics of AG(ϕ). It can be
shown (details are omitted) that satisfaction of the greatest fixed point formula
is realized via loops in the model; while satisfaction of the least fixed point
formula demands the existence of a loop-free tableau. As such, if a tableau-node
c′//s |= Ψ is visited and there exists a prior node c//s |= Ψ i.e. the same tuple
s paired with the same Ψ is seen in a tableau path, we verify whether there
exists a least fixed point formula AU in Ψ ; if such a formula is present, we say
that the tableau path resulted in an unsuccessful path; otherwise, we terminate
the tableau path successfully and equate c′ with c (a loop in the converter is
generated).

Complexity. The tableau considers all possible subformulas of the given set of
desired properties. Each such subformula is paired with all possible states in the
protocol-pair. The complexity of the tableau construction is O(|S| × |ϕ|) where
S is the number of states in the protocol pairs and |ϕ| is the size of the formula
expressing the desired properties (the conjunction of all properties).

The following theorem follows from the above discussion.

Theorem 1 (Sound and Complete). Two protocols P1 and P2 are compatible

wrt to a set Ψ of ACTL formulas (∀ϕ ∈ Ψ : C//(P1||P2) |= ϕ) if and only if there

exists a successful tableau for the tableau node c0//s0 |= Ψ where s0 is the start

state of P1||P2 and c0 is the start state of C.
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6 Live Converters

For two protocols P1 and P2 and a set of ACTL specifications Ψ , the tableau-based
approach formulated above can generate multiple converters. This is because the
rules ∨ and unrs may lead to several choices for constructing the tableau-node
denominator. Some of the generated converters, therefore, may disable protocol-
behavior and lead to conformance of the desired property vacuously. For example,
properties of the form φ⇒ ψ will be satisfied by the converted protocol pairs if
φ is not satisfied.

To counter this situation, we can impose further restrictions on converter
generation by including liveness conditions that need to be satisfied by the re-
sulting system C//P1||P2. Such liveness conditions can be defined using ACTL

and used as input to tableau along with desired properties. The goal will be
avoid construction of converters that will lead to violation of liveness properties
by the converted protocols.

For the producer-consumer example, we use the following liveness conditions:

– AGA(true U D In), AGA(true U D Out): C must allow the producer to always
eventually write data and the consumer to always eventually consumer some
data.

– AG[D Out ⇒ ( D In ∨ AXA(¬R Out U D In) )]: Once data is written, no
further requests are allowed before a read operation is performed.

The converter synthesis process for the producer-consumer is presented in sec-
tion 9. The combined system C//(P1||P2) is shown in Fig. 6. The converter C
obtained for the producer-consumer example is a maximally permissive converter
that ensures that C//(P1||P2) satisfies the above liveness constraints. For better
readability in Fig. 6, we have annotated each state with i(j, k) where i denotes
the state of the generated converter while j and k are states of P1 (producer)
and P2 (consumer) respectively.

7 Results

A protocol conversion tool employing the tableau construction approach has
been implemented by extending the NuSMV model checker [6]. The implemen-
tation takes as input the Kripke structure representation of two protocols P1

and P2 (obtained from NuSMV models) and a set Ψ of ACTL properties from the
user. It proceeds by computing the parallel composition P1||P2 and then uses
the tableau rules to realize the converter, if it exists. The results table (Tab.1)
contains four columns. The first two columns contain the description and size
(number of states) of the participating protocols. The ACTL properties used are
shown in the third column with the size of the converter shown in column 4.
The first five problems are well-known protocol conversion problems [16, 13].
The next problem is a producer-consumer example where the producer can pro-
duce multiple 8-bit data after each handshake whereas the slave can only read

SLA++P 2007 Preliminary Version 13
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P1(|SP1 |) P1(|SP2 |) ACTL Properties C(|SC |)

Master (3) Slave (3) AG(¬Req InUR Out), 6
AG[R Out ⇒ ((Req In)∨

AXA(¬R Out U Req In))],
A(¬G Out U R Out),
A(¬Gnt In U G Out)

ABP sender(6) NP receiver(4) AGA(¬A Out U ACC), 8
AG[A Out ⇒ (ACC ∨

AXA(¬A Out U ACC))]

ABP receiver(8) NP sender(3) AGA(¬A Out U ACC), 8
AG[(A+ ⇒ (ACC ∨

AXA(¬A Out U ACC))]

Poll-End Receiver(2) Ack-Nack AG[Data Out ⇒ (Data In ∨ 6
Sender(3) AXA(Data In U Data Out))]

Handshake (2) Serial(2) AGA(¬A U A′), AGA(¬B U B′), 3
AG(A′ ⇒ AXA(¬A′

U A))

Multi-write Single-read AG(¬Error),A(¬D Out U Req In)
master protocol(3) slave protocol(4) A(¬Req In U R Out)
8-bit Write 8-bit Read 8

Mutex Process 1 (3) Mutex Process AG(¬critical1 ∨ ¬critical2) 7
2 (3)

MCP missionaries MCP cannibals AGAF((MCP.missionaries = 0)∧ 22
(30) (MCP.cannibals = 0))

4-bit ABP Sender Modified Receiver AGAFsender.state = get 14312
(166432)

Table 1. Implementation Results

one 8-bit data after each handshake. The generated converter controls the com-
munication between the two components such that paths where data is lost are
never reached. The final three results are well-known NuSMV examples modified
to create a mismatch. Note that size entry in the second column for the final
two results refers to the combined size of the system (size of P1||P2) for these
examples.

8 Conclusions and Future Directions

Protocol conversion to resolve protocol mismatches is an active research area.
A number of solutions have been proposed. Some approaches require significant
user input and guidance, while some only partly address the protocol conversion
problem. Most formal approaches work on protocols that have unidirectional
communication and use finite state machines to describe specifications. In this
paper we propose a formal approach to protocol conversion which alleviates the
above problems. Specifications are described in temporal logic and protocols are
allowed to be bidirectional. A tableau-based approach using the model checking
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framework is used to generate converters in polynomial time. We prove that the
approach is sound and complete and provide implementation results.

The presented approach uses ACTL to describe desired specifications. The
extension to the more expressive logic CTL requires minimal effort but the pres-
ence of existential formulas in CTL will increase the complexity to EXPTIME-
complete as protocol conversion under CTL is equivalent to module checking

[12, 1] problem. Similarly, tableau rules for LTL will result in PSPACE com-
plexity of protocol conversion. Future work includes the unification of various
protocol conversion issues under the presented framework. The technique can
be extended to resolve data-width mismatches [8], clock-mismatches [14] and
interface-mismatches between protocols. Data-width mismatches occur when
protocols have varying word-sizes. A converter must therefore ensure that no
data is lost during inter-protocol communication. Clock-mismatches occur when
protocols operate using clocks that may be running at different frequencies. In-
terface mismatches occur when protocols use inconsistent naming conventions
for control signals, thus requiring the converter to perform event translation [5].
Another issue is the handling of uncontrollable actions [11, 1]. Some transitions
in P1||P2 may be uncontrollable and therefore cannot be disabled. An exten-
sion to the presented tableau-based converter generation approach to generate
a converter, if possible, under these additional restrictions is endeavored.
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9 Appendix A: Tableau Generation and Converter

Extraction

This section presents the tableau generation and converter extraction for the
producer-consumer example in Fig.2.

A tableau consists of nodes and links. A node t corresponds to a state s in
P1||P2 (called t.state) and two sets of ACTL formulas: now (t.now) and next
(t.next). t.now contains formulas to be satisfied by t.state and t.next is used
to hold AX formulas that (after removing the AX operator) are to be satisfied
by the successors of t.state using the unrs rule. Formulas in t.now are bro-
ken down using the tableau rules in Fig. 5 and any future commitments are
moved to t.next. Once t.now is empty, all future commitments are passed to
children nodes, that are essentially tableau nodes corresponding to the succes-
sors of t.state. Tableau nodes are connected to each other using links. Each node
also has a type, used as a status flag. A node with no children is called a PURE
node. A PURE node can be expanded into one of the following two types of
nodes: OR NODE or AX NODE.

A node of the type OR NODE is formed when an OR formula is encountered
in the now set of a node. An OR formula of the type ϕ1 ∨ ϕ2 formula can be
satisfied by a state s in two possible ways: if s satisfies ϕ1 or if s satisfies ϕ2

(rules ∨1 and ∨2 in Fig. 5). Therefore, if such a formula is present in t.now
of a node t, two children nodes, corresponding to the state t.state are formed.
All formulas in t.now and t.next are copied to the now and next sets of the
children except that the OR formula responsible for the split is replaced by ϕ1

in child 1 and ϕ2 in child 2. On the other hand, a node t is expanded to become
a type AX NODE when t.now is empty and when t.next contains at least once
AX formula. Following rule unrs in Fig. 5, the state t.state satisfies all next
formulas when all its successors satisfy these future commitments (all formulas
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in t.next after deleting the preceding AX). Hence the node is expanded to become
a type AX NODE where each child node corresponds to a successor of t.state
and contains in its now set, all formulas in t.next after their preceding AX have
been removed.

The tableau construction for the producer-consumer example starts at the
construction of the root node of the tableau corresponding to the state (s0, t0) of
P1||P2 (Fig. 2) with its now set containing all formulas and liveness conditions
(described in sections 4 and 6). The root node is shown in Tab. 2.

now next

AG¬Error
AG[¬D Out ∨ (D In ∨ AXA(¬D In U D Out))]

AGA(true U D In)
AGA(true U D Out)

AG[¬D Out ∨ ( D In ∨ AXA(¬R Out U D In) )]

Table 2. Node 0. state = (s0, t0), type = PURE.

After the creation of the root node, we successively apply the tableau rules
given in Fig. 5 to the formulas in the now set and move any AX type sub-
formulas to next until now is empty. Due to the presence of ∨-type subformu-
las (such as the sub-formula D In ∨ (true ∧ AGA(true U D In)) obtained from
AGA(true UD In)), the root node is expanded and re-expanded as anOR NODE
to have several children node (each corresponding to one satisfaction possibility
of the various ∨ formulas). However, for the producer-consumer example, only
one valid PURE node (node 0b) remains (shown in Tab. 3). This node is a child
of the root node 0 which is now of type OR NODE (as described above).

now next

AXAG¬Error
AXAG[¬D Out ∨ (D In ∨ AXA(¬D In U D Out))]

AXAGA(true U D In)
AXAGA(true U D Out)

AXAG[¬D Out ∨ ( D In ∨ AXA(¬R Out U D In) )]
AXA(true U D In)
AXA(true U D Out)

Table 3. Node 0b. state = (s0, t0), type = PURE.

We use the unrs rule and expand the PURE node 0b to have two children
nodes, one for each of the two successors of (s0, t0), that have the same now
sets as 0b.next (after the preceding AX). The above process of applying tableau
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rules to break down formulas in a node’s now set followed by the application is
repeated until all PURE type nodes have been exhausted (expanded or deleted
due to failure).

9.1 Converter Extraction

The converter from a tableau is extracted by traversing the nodes of the tableau
starting from its root node. A successful tableau contains only nodes of the type
AX NODE or OR NODE as all PURE type nodes are either deleted (due to
failure) or expanded.

If a node of type OR NODE is encountered, one valid child is chosen for
further traversal. However, when a node of type AX NODE is encountered, all

valid children nodes are iteratively traversed. Each such child of a AX NODE
type node t corresponds to an enabled successor of the state t.state which leads
to the satisfaction of all future commitments contained in t.next. Of course, there
may be some successors of t.state which do no correspond to any child of t. Such
successors of t.state lead to the failure of future commitments and therefore, the
links to their respective nodes are removed from t during converter construction.
AX NODE type nodes are also special because each such node corresponds to
a state in the converter. All links to the children of an AX NODE type node
represent actual transitions in P1||P2 and therefore the generated converter must
enable all such transitions. For example, if a node t corresponding to state s in
P1||P2 has two children t′ and t′′ corresponding to successors s′ and s′′ of s,

such that s
σ1−→ s′ and s

σ2−→ s′′, we construct a converter state c which has two

transitions c
σ
′
1−→ c′ and c

σ
′
2−→ c′′ where D(σ1, σ

′

1
) and D(σ2, σ

′

2
). Further, c′ (c′′)

corresponds to t′ if it is a type AX NODE or otherwise to some AX NODE
t′
1

such that t links to t′
1

through a number of OR NODE type nodes.
For the producer consumer example in Fig. 2, Tab. 4 shows how each node

of type AX NODE corresponds to a generated converter state. The generated
converter results in the combined system C//(P1||P2) in Fig. 6.

Node P1||P2 state Converter state Enabled successors of C
Node 0b (s0, t0) c0 c1
Node 2b (s1, t1) c1 c2, c3
Node 3b (s3, t2) c2 c0
Node 4b (s3, t1) c3 c4
Node 5b (s0, t1) c4 c5
Node 6b (s1, t2) c5 c6
Node 7b (s3, t0) c6 c4

Table 4. Converter Generation From Tableau
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Abstract

Reactive programs have to react continuously to their inputs. Here the time needed to
react with the according output is important. While the synchrony hypothesis takes
the view that the program is infinitely fast, real computations take time. Similar to
the traditional Worst Case Execution Time (WCET), the Worst Case Reaction Time
(WCRT) of a program determines the maximal time for one reaction.

In this paper, we present an algorithm to determine the WCRT of a program written
in the synchronous language Esterel. This value gives an upper bound for the execution
time when the program is executed on a reactive processor. Specifically, we consider the
execution of the Esterel program on the Kiel Esterel Processor (KEP), a reactive processor
that can execute Esterel-like instructions. Here the WCRT directly determines an upper
bound on the instruction cycles per logical tick. The WCRT also gives a guideline for the
execution time when the Esterel program is compiled to software by a simulation-based
approach.

We have implemented the WCRT analysis algorithm as part of an Esterel compiler for
the KEP and have measured an accuracy of analysis results of about 40% on average.

Key words: Synchronous Languages, Esterel, Worst Case Execution
Time, Worst Case Reaction Time, Instantaneous Reachability

1 Introduction

Many embedded systems belong to the class of reactive systems, which continuously
react to inputs from the environment by generating corresponding outputs. For
these systems, exact timing information or at least an upper bound of the execution
time is crucial. To perform an exact Worst Case Execution Time (WCET) analysis
is difficult, and in general not possible for Turing-complete languages. It typically
imposes fairly strong restrictions on the analyzed code, such as a-priori known
upper bounds on loop iteration counts, and even then control flow analysis is often
overly conservative [18,5]. Furthermore, even for a linear sequence of instructions,
typical modern architectures make it difficult to predict how much time exactly the
execution of these instructions consumes, due to pipelining, out-of-order execution,
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argument-dependent execution times (e. g., particularly fast multiply-by-zero), and
caching of instructions and/or data. Finally, if external interrupts are possible
or if an operating system is used, it becomes even more difficult to predict how
long it really takes for an embedded system to react to its environment. Despite
the advances already made in the field of WCET analysis, it appears that most
practitioners today still resort to extensive testing plus adding a safety margin to
validate timing characteristics. To summarize, performing conservative yet tight
WCET analysis appears by no means trivial and is still an active research area.

One step to make WCET analysis of reactive applications more feasible is to
choose a programming language that provides direct, predictable support for re-
active control flow patterns. One suitable candidate for this is the synchronous
language Esterel [2], which has been developed for programming control-oriented,
embedded systems. It directly supports concurrency and multiple forms of preemp-
tion. Based on the synchrony hypothesis, it offers determinism even for concurrent
components. The execution of Esterel programs is divided into (logical) ticks, each
of which conceptually takes no time. Esterel forbids programs with a potentially
unbounded number of statements to be performed within a tick. This is reflected
in the rule that there cannot be instantaneous loops; within a loop body, each
statically feasible path must contain at least one tick-delimiting instruction. The
restricted nature of Esterel and its sound mathematical semantics allow formal anal-
ysis of Esterel programs and make the computation of a WCET for Esterel programs
achievable.

In addition to choosing a suitable programming language, the feasibility of
WCET analysis crucially depends on the execution platform. A relatively new
approach for control-oriented reactive-systems are reactive processors [22,14,15].
These processors directly support reactive control flow, such as preemption and
concurrency. In this paper we will use the Kiel Esterel Processor (KEP), a reactive
processor based on the synchronous language Esterel, to show that timing analysis
is practical for reactive processors, hence making the reactive processing approach
particularly well suited for hard real-time systems. There are two main factors that
contribute to this, on the one hand the synchronous execution model of Esterel, and
on the other hand the direct implementation of this execution model on a reactive
processor. Furthermore, reactive processors are not designed to optimize (average)
performance for general purpose computations, and hence do not have a hierarchy
of caches, pipelines, branch predictors, etc. This leads to a simpler design and
execution behavior and further facilitates WCET analysis.

As we here are investigating the timing behavior for reactive systems, we are
concerned with computing the maximal time it takes to compute a single reaction,
that is the time from given input events to generated output events. Therefore
we call this analysis a Worst Case Reaction Time (WCRT) analysis. The WCRT
determines the maximal rate for the interaction with the environment. Whether
WCRT can be formulated as a classical WCET problem or not depends on the
implementation approach. If the implementation is based on sequentialization such
that there exist two dedicated points of control at the beginning and the end of
each reaction, respectively, then WCRT can be formulated as WCET problem; this
is the case, for example, if one “automaton function” is synthesized, which is called
during each reaction. If, however, the implementation builds on a concurrent model

2
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of execution, where each thread maintains its own state of control across reactions,
then WCRT requires not only determining the maximal length of pre-defined in-
struction sequences, as in WCET, but one also has to analyze the possible control
point pairs that delimit these sequences. Thus, WCRT is more elementary than
WCET in the sense that it considers single reactions, instead of whole programs,
and at the same time WCRT is more general than WCET in that it is not limited
to pre-defined control boundaries.

The contribution of this paper is a WCRT analysis of complete Esterel programs
including concurrency and preemption. The analysis computes the WCRT in terms
of KEP instruction cycles, which roughly match the number of executed Esterel
statements. As part of the WCRT analysis, we also present an approach to cal-
culate potential instantaneous paths, which may be used in compiler analyses and
optimizations that go beyond WCRT analysis.

In the following section, we consider related work. In Section 3 we will give
an introduction into the synchronous model of computation for Esterel and the
KEP. We outline the generation of a Concurrent KEP Assembler Graph (CKAG),
an intermediate graph representation of an Esterel program, which we use for our
analysis. Section 4 explains our algorithm in detail, while Section 5 gives experi-
mental results, comparing the computed number of reactions with values obtained
from exhaustive simulation. The paper concludes in Section 6.

2 Related Work

As mentioned in the introduction, there exist numerous approaches to classical
WCET analysis. For a survey see, e. g., Puschner and Burns [20]. These approaches
usually consider (subsets) of general purpose languages, such as C, and take infor-
mations on the processor designs and caches into account.

Regarding the analysis of synchronous programs, Logothetis, Schneider and Met-
zler [16,17] have employed model checking to perform a precise WCET analysis for
the synchronous language Quartz, which is similar to Esterel. However, their prob-
lem formulation was different from the WCRT analysis problem we are addressing.
They were interested in computing the number of ticks required to perform a cer-
tain computation, such as a primality test, which we would actually consider to be
a transformational system rather than a reactive system [12]. We here instead are
interested in how long it may take to compute a single tick, which can be considered
an orthogonal issue.

One important problem that must be solved when performing WCRT analysis
for Esterel is to determine whether a code-segment is reachable instantaneously or
delayed or both. This is related to the well-studied property of surface and depth
of an Esterel program, i. e., to determine whether a statement is instantaneous
reachable or not, which is also important for schizophrenic Esterel programs [2].
This was addressed in detail by Tardieu and de Simone [23]. They also point
out that an exact analysis of instantaneous reachability has NP complexity. We,
however, are not only interested whether a statement can be instantaneous, but
also whether it can be non-instantaneous.

Beside being executed on a reactive processors, Esterel programs can be syn-
thesized to hardware [1] or compiled into software, e. g., C-code; see Edwards [10]

3
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for an overview. Currently, the most efficient compilation schemes are simulation
based [9,7,19,11]: the Esterel program is organized according to some kind of graph-
ical structure and its current state is stored in a data-structure on the application
level, e. g., a bit-vector. Based on this vector, the current actions in the graph are
triggered. While this approach produces fairly efficient code, both in size and in ex-
ecution speed, it removes much of the structure from the Esterel-program, making
the WCET analysis as hard as for “normal” C programs.

Ringler [21] considers the WCET analysis of C code generated from Esterel. But
his approach is only feasible for the generation of circuit code [2], which scales well
for large applications, but tends to be slower than the simulation based approach.

Li et al. [14] compute a WCRT of sequential Esterel programs directly on the
source code. However, they did not address concurrency, and their source-level
approach could not consider compiler optimizations. We perform the analysis on
an intermediate level after the compilation, as a last step before the generation of
assembler code. This also allows a finer analysis and decreases the time needed for
the analysis.

The KEP contains a TickManager [14], which monitors how many instructions
are executed in the current logical tick. To minimize jitter, a maximum number
of instructions for each logical tick can be specified. If the current tick needs less
instructions, the start of the next tick is delayed. If the tick needs more instructions,
an error-output is set. Hence a tight, but conservative upper bound of the maximal
instructions for one tick is of direct value for the KEP. See Li et al. [14] for details
on the relation between the maximum number of instruction per logical tick and
the physical timing constraints from the environment perspective.

3 Esterel, KEP and the CKAG

Next we give a short overview of Esterel and the KEP. While our analysis is im-
plemented in the compiler from Esterel to the KEP assembler, it is also of interest
for other execution forms of Esterel. The analysis itself is performed on a graph
representation of Esterel-programs, the CKAG.

3.1 Esterel

The execution of an Esterel program is divided into logical instants, or ticks, and
communication within or across threads occurs via signals; at each tick, a signal
is either present (emitted) or absent (not emitted). Esterel statements are either
transient, in which case they do not consume logical time, or delayed, in which case
execution is finished for the current tick. Per default statements are transient, and
these include for example emit, loop, present, or the preemption operators. Delayed
statements include pause, (non-immediate) await, and every. Esterel’s parallel opera-
tor, ||, groups statements in concurrently executed threads. The parallel terminates
when all its branches have terminated.

Esterel offers two types of preemption constructs. An abortion kills its body
when an abortion trigger occurs. We distinguish strong abortion, which kills its
body immediately (at the beginning of a tick), and weak abortion, which lets its
body receive control for a last time (abortion at the end of the tick). A suspension

4
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module ExSeq:
input I ;
output R,S;

weak abort
loop

pause;
emit R

end loop
when I;
emit S
end module

tick

In:

Out:

-
R R

I

R
S

(a) Esterel code
and sample trace

module: ExSeq
EMIT _TICKLEN,#6

[L1,W5] WABORT I,A0

[L2,W3] A1

[L2,W3/6] PAUSE

[L3,W5] EMIT R[L5,W2] A0

I

w

[L4,W4] GOTO A1[L5,W2] EMIT S

[L6,W1/1] HALT

(b) CKAG

% module: ExSeq

INPUT I
OUTPUT R,S
EMIT TICKLEN,#6

[L1,W5] WABORT I,A0
[L2,W3/6] A1: PAUSE
[L3,W5] EMIT R
[L4,W4] GOTO A1
[L5,W2] A0: EMIT S
[L6,W1/1] HALT

(c) KEP assembler

− Tick 1 −
! reset ;
% In:
% Out: R
% RT = 3
WABORTL1 PAUSEL2
− Tick 2 −
% In:
% Out: R
% RT = 4
PAUSEL2 EMITL3
GOTOL4 PAUSEL2
− Tick 3 −
% In: I
% Out: R S
% RT = 6
PAUSEL2 EMITL3 GOTOL4
PAUSEL2 EMITL5 HALTL6
− Tick 4 −
% In:
% Out:
% RT = 1
HALTL6

(d) KEP sample
trace

Fig. 1. A sequential Esterel example. The body of the KEP assembler program (without
interface declaration and initialization of the TickManager) is annotated with line numbers
L1–L6, which are also used in the CKAG and in the trace to identify instructions. The
trace shows for each tick the input and output signals that are present and the reaction
time (RT ), in instruction cycles.

freezes the state of a body in the instant when the trigger event occurs.

Esterel also offers an exception handling mechanism via the trap/exit statements.
An exception is declared with a trap scope, and is thrown (raised) with an exit

statement. An exit T statement causes control flow to move to the end of the
scope of the corresponding trap T declaration. This is similar to a goto statement,
however, there are further rules when traps are nested or when the trap scope
includes concurrent threads. If one thread raises an exception and the corresponding
trap scope includes concurrent threads, then the concurrent threads are weakly
aborted; if concurrent threads execute multiple exit instructions in the same tick,
the outermost trap takes priority.

A simple sequential Esterel example ExSeq can be found in Figure 1(a). From
the second instant on it will continuously emit the signal R. When the input I occurs,
it emits R one last time. In the same instant, it also emits S and terminates. This
behavior can also be observed in the trace in Figure 1(a), where input I occurs in
the third tick.

For another example, consider ExPar shown in Figure 2(a), which loops over two
parallel threads. The program emits the signals R and S in the first instant, and
since the loop instantaneously restarts its body, it will from the second instant on
continuously emit all three signals R, S, and T.

3.2 The Kiel Esterel Processor

The instruction set of the KEP is very similar to the Esterel language. The Esterel
language distinguishes kernel statements (e. g., emit, pause) and derived statements
(e. g., await, every) [3]. Derived statements are in general just syntactic sugar and

5
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module ExPar:

output R,S,T;

loop
[

emit R;
||

emit S;
pause;
emit T;

]
end loop

end module

tick

In:

Out:

-
R
S

R
S
T

R
S
T

(a) Esterel

module: ExPar
EMIT _TICKLEN,#11

[L1,W7] A0

[L3,W7] PAR*

[L4,W1] A1

 1

[L5,W2] A2

 1

[L4,W1] EMIT R

[L8,W9/11] JOIN 0

[L5,W2] EMIT S

[L6,W1/2] PAUSE

[L7,W1] EMIT T

[L9,W8] GOTO A0

(b) CKAG

% module: ExPar

OUTPUT R,S,T
EMIT TICKLEN,#11

[L1,W7] A0: PAR 1,A1,1
[L2] PAR 1,A2,2
[L3,W7] PARE A3,1
[L4,W1] A1: EMIT R
[L5,W2] A2: EMIT S
[L6,W1/2] PAUSE
[L7,W1] EMIT T
[L8,W9/11] A3: JOIN 0
[L9,W8] GOTO A0

(c) KEP assembler

− Tick 1 −
! reset ;
% In:
% Out: R S
% RT = 7
PARL1 PARL2 PAREL3
EMITL4 EMITL5 PAUSEL6
JOINL8
− Tick 2 −
% In:
% Out: R S T
PAUSEL6 EMITL7 JOINL8
GOTOL9
PARL1 PARL2 PAREL3
EMITL4 EMITL5 PAUSEL6
JOINL8
− Tick 3 −
% In:
% Out: R S T
PAUSEL6 EMITL7 JOINL8
GOTOL9
PARL1 PARL2 PAREL3
EMITL4 EMITL5 PAUSEL6
JOINL8

(d) Sample trace

Fig. 2. A concurrent example program.

can be reduced to kernel statements. The KEP Instruction Set Architecture (ISA)
includes all kernel statements, and in addition some frequently used derived state-
ments. The KEP ISA also includes valued signals, which cannot be reduced to
kernel statements. The only parts of Esterel v5 that are not part of the KEP ISA
are combined signal handling and external task handling, as they both seem to be
used only rarely in practice; however, adding these capabilities to the KEP ISA
seems relatively straightforward.

Due to this direct mapping from Esterel to the KEP ISA, most Esterel state-
ments can be executed in just one instruction cycle. For more complicated state-
ments, well-known translations into kernel statements exist, allowing the KEP to
execute arbitrary Esterel programs. Part of the KEP instruction set is shown in
Figure 3. The KEP assembler programs corresponding to ExSeq and ExPar and
sample traces are shown in Figures 1(c)/(d) and 2(c)/(d), respectively. Note that
PAUSE is executed for at least two consecutive ticks, and consumes an instruction
cycle at each tick.

The KEP provides a configurable number of Watcher units, which detect whether
a signal triggering a preemption is present and whether the program counter (PC)
is in the corresponding preemption body [15]. Therefore, no additional instruction
cycles are needed to test for preemption. Only upon entering a preemption scope two
cycles are needed to initialize the Watcher, as for example the WABORTL1 instruction
in ExSeq.

To implement concurrency, the KEP employs a multi-threaded architecture,
where each thread has an independent program counter (PC) and threads are sched-
uled according to their statuses and dynamically changing priorities. To begin of
each instruction-cycle, the enabled thread with the highest priority is selected and
executed. The scheduler is very light-weight. In the KEP, scheduling and context
switching do not cost extra instruction cycles, only changing the priority of a thread

6
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Mnemonic, Operands Esterel Syntax Cycles Notes

PAR prio1, startAddr1, id1

. . .
PAR prion, startAddrn, idn

PARE endAddr
startAddr1:
. . .
startAddr2:

. . .
startAddrn:
. . .
endAddr :
JOIN

[
p1

||
...
||

pn

]

9=; n + 1

1

For each thread, one PAR is needed
to define the start address, thread
id and initial priority. The end of
a thread is defined by the start ad-
dress of the next thread, except for
the last thread, whose end is de-
fined via PARE.
The cycle count of a fork node de-
pends on the count of threads.

PRIO prio 1 Set current thread priority to prio.

[W]ABORT[I, n] S, endAddr
. . .
endAddr :

[weak] abort
. . .

when [immediate, n] S

2

SUSPEND[I,n] S, endAddr
. . .
endAddr :

suspend
. . .

when [immediate, n] S

2

startAddr :
. . .
EXIT exitAddr startAddr
. . .
exitAddr:

trap T in
. . .
exit T
. . .

end trap

1

Exit from a trap, star-
tAddr/exitAddr specifies trap
scope. Unlike GOTO, check for
concurrent EXITs and terminate
enclosing ||.

PAUSE pause 1 Wait for a signal. AWAIT TICK is
equivalent to PAUSE.AWAIT [I, n] S await [immediate, n] S 1

SIGNAL S signal S in . . . end 1 Initialize a local signal S.

EMIT S [, {#data|reg}] emit S [(val)] 1 Emit (valued) signal S.

SUSTAIN S [, {#data|reg}] sustain S [(val)] 1 Sustain (valued) signal S.

PRESENT S, elseAddr present S then . . . end 1 Jump to elseAddr if S is absent.

HALT halt 1 Halt the program.

addr : . . . GOTO addr loop . . . end loop 1 Jump to addr.

Fig. 3. Overview of the KEP instruction set architecture, and their relation to Esterel
and the number of processor cycles for the execution of each instruction.

costs an instruction. For each thread, a PAR instruction is executed, to initialize
the program counter and the priority and to define the thread id. Thereafter one
PARE instruction is executed, which denotes the end of the parallel scope. During
each instant in which one parallel thread is active, also the JOIN must be executed,
in order to determine whether the threads have terminated.

3.3 The Concurrent Kep Assembler Graph (CKAG)

The WCRT analysis is not directly performed on the Esterel level, but on an in-
termediate data structure, the CKAG. The CKAG is a directed graph composed
of various types of nodes and edges to match KEP program behavior. It is used
during compilation from Esterel to KEP assembler, for, e. g., dead code elimination,
priority assigning [13], optimizations and the WCRT analysis.

The CKAG distinguishes transient nodes, which represent instantaneous exe-
cution, delay nodes, which represent statements that may hold for more than one
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EMIT S

suc_c

(a) transient

A0

suc_c

(b) label

PAUSE

suc_c suc_s

s

suc_w

w

suc_e

e

(c) delay

PAR*

suc_c

(d) fork

JOIN

suc_c suc_e

(e) join

Fig. 4. Nodes and edges of a Concurrent KEP Assembler Graph (CKAG).

tick, and fork and join nodes, which represent concurrency (see Figure 4). Given
a CKAG node n, the set n.suc c denotes the set of sequential control flow succes-
sors (represented in the CKAG as solid edges). Successors reached via preemptions
are n.suc s for strong aborts, n.suc w for weak aborts, and n.suc e for exceptions
(exit), represented as dashed edges; they are marked with small tail labels s, w and
e, respectively. The CKAGs corresponding to ExSeq and ExPar can be found in
Figures 1(b) and 2(b), respectively.

The CKAG is built from Esterel source by traversing recursively over its Abstract
Syntax Tree (AST) generated by the Columbia Esterel Compiler (CEC) [8]. Visiting
an Esterel statement results in creating the according CKAG node. A node typically
contains exactly one statement, except label nodes containing just address labels
and fork nodes containing one PAR statement for each child thread initialization
and a PARE statement. When a delay node is created, additional preemption edges
are added according to the abortion/exception context.

To preserve the signal-dependencies in the execution, additional priority assign-
ments (PRIO statements) might be introduced by the compiler. To assure schedu-
lability, the program is completely dismantled, i. e., transformed into kernel state-
ments. In this dismantled graph the priority assignments are inserted. A subsequent
“undismantling” step before the computation of the WCRT detects specific patterns
in the CKAG and collapses them to more complex instructions, such as AWAIT or
SUSTAIN, which are also part of the KEP instruction set.

4 Worst Case Reaction Time (WCRT)

Given a KEP program we define its WCRT as the maximum number of KEP cycles
executable in one instant. Thus WCRT analysis requires finding the longest in-
stantaneous path in the CKAG, where the length metric is the number of required
KEP instruction cycles. We abstract from signal relationships and might therefore
consider unfeasible executions. Therefore the computed WCRT can be pessimistic.
We first present, in Section 4.1, a restricted form of the WCRT algorithm that does
not handle concurrency yet. The general algorithm requires an analysis of instant
reachability between fork and join nodes, which is discussed in Section 4.2, followed
by the presentation of the general WCRT algorithm in Section 4.3.

4.1 Sequential WCRT Algorithm

First we present a WCRT analysis of sequential CKAGs (no fork and join nodes).
Consider the ExSeq example in Figure 1(a) again. The longest possible execution

8

28 SLA++P 2007 Preliminary Version



M.Boldt, C.Traulsen and R. v.Hanxleden

1 int getWcrtSeq(g) // Compute WCRT for sequential CKAG g

2 forall n ∈ Nodes do n.inst := n.next := ⊥ end
3 getInstSeq(g.root)

4 forall d ∈ DelayNodes do getNextSeq(d) end
5 return max ({g.root.inst}

S
{d.next : d ∈ DelayNodes})

6 end

1 int getInstSeq(n) // Compute statements instantaneously reachable from node n

2 if n.inst = ⊥ then
3 if n ∈ TransientNodes ∪ LabelNodes then
4 n.inst := max {getInstSeq(c) : c ∈ n.suc c} + cycles(n.stmt)

5 elif n ∈ DelayNodes then
6 n.inst := max {getInstSeq(c) : c ∈ n.suc w ∪ n.suc e} + cycles(n.stmt)

7 fi
8 fi
9 return n.inst

10 end

1 int getNextSeq(d) // Compute statements instantaneously reachable from delay node d at tick start

2 if d.next = ⊥ then
3 d.next := max {getInstSeq(c) : c ∈ d.suc c ∪ d.suc s} + cycles(d.stmt)

4 fi
5 return d.next

6 end

Fig. 5. WCRT algorithm, restricted to sequential programs. The nodes of a CKAG g
are given by Nodes = TransientNodes ∪ LabelNodes ∪ DelayNodes ∪ ForkNodes ∪
JoinNodes, g.root indicates the first KEP statement. cycles(stmt) returns the number of
instruction cycles to execute stmt, see third column in Figure 3.

occurs when the signal I becomes present, as is the case in Tick 3 of the example
trace shown in Figure 1(d). Since the abortion triggered by I is weak, the abort body
is still executed in this instant, which takes four instructions: PAUSEL2, EMITL3, the
GOTOL4, and PAUSEL2 again. Then it is detected that the body has finished its
execution for this instant, the abortion takes place, and EMITL5 and HALTL6 are
executed. Hence the longest possible path takes six instruction cycles.

The sequential WCRT is computed via a Depth First Search (DFS) traversal
of the CKAG, see the algorithm in Figure 5. For each node n a value n.inst
is computed, which gives the WCRT from this node on in the same instant when
execution reaches the node. For a transient node, the WCRT is simply the maximum
over all children plus its own execution time.

For non-instantaneous delay nodes we distinguish two cases within a tick: control
can reach a delay node d, meaning that the thread executing d has already executed
some other instructions in that tick, or control can start in d, meaning that d must
have been reached in some preceding tick. In the first case, the WCRT from d
on within an instant is expressed by the d.inst variable already introduced. For
the second case, an additional value d.next stores the WCRT from d on within
an instant; “next” here expresses that in the CKAG traversal done to analyze the
overall WCRT, the d.next value should not be included in the current tick, but in
a next tick. Having these two values ensures that the algorithm terminates in the
case of non-instantaneous loops: to compute d.next we might need the value d.inst.

For a delay node, we also have to take abortions into account. The handlers
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(i. e., their continuations—typically the end of an associated abort/trap scope) of
weak abortions and exceptions are instantaneously reachable, so their WCRTs are
added to the d.inst value. In contrast, the handlers of strong abortions cannot be
executed in the same instant the delay node is reached, because according to the
Esterel semantics an abortion body is not executed at all when the abortion takes
place. On the KEP, when a strong abort takes place, the delay nodes where the
control of the (still active) threads in the abortion body resides are executed once,
and then control moves to the abortion handler. In other words, control cannot
move from a delay node d to a (strong) abortion handler when control reaches d,
but only when it starts in d. Therefore, the WCRT of the handler of a strong
abortion is added to d.next, and not to d.inst.

We do not need to take a weak abortion into account for d.next, because it
cannot contribute to a longest path. An abortion in an instant when a delay node
is reached will always lead to a higher WCRT than an execution in a subsequent
instant where a thread starts executing in the delay node.

The resulting WCRT for the whole program is computed as the maximum over
all WCRTs of nodes where the execution may start. These are the start node and
all delay nodes. To take into account that execution might start simultaneously in
different concurrent threads, we also have to consider the next value of join nodes.

Consider the example ExSeq in Figure 1. Each node n in the CKAG g is anno-
tated with a label “W〈n.inst〉” or, for a delay node, a label “W〈n.inst〉/〈n.next〉.”
In the following, we will refer to specific CKAG nodes with their corresponding
KEP assembler line numbers L〈n〉. It is g.root = L1. The sequential WCRT com-
putation starts initializing the inst and next values of all nodes to ⊥ (line 2 in
getWcrtSeq, Figure 5). Then getInstSeq(L1) is called, which computes L1.inst := max

{ getInstSeq(L2) } + cycles(WABORTL1). The call to getInstSeq(L2) computes and re-
turns L2.inst := cycles(PAUSEL2) + cycles(EMITL5) + cycles(HALTL6) = 3, hence L1.inst
:= 3 + 2 = 5. Next, in line 4 of getWcrtSeq, we call getNextSeq(L2), which computes
L2.next := getInstSeq(L3) + cycles(PAUSEL2). The call to getInstSeq(L3) computes
and returns L3.inst := cycles(EMITL3) + cycles(GOTOL4) + L2.inst = 1 + 1 + 3 =
5. Hence L2.next := 5 + 1 = 6, which corresponds to the longest path triggered
by the presence of signal I, as we have seen earlier. The WCRT analysis therefore
inserts an “EMIT TICKLEN, #6” instruction before the body of the KEP assembler
program to initialize the TickManager accordingly.

4.2 Instantaneous Statement Reachability for Concurrent Esterel Programs

It is important for the WCRT analysis whether a join and its corresponding fork can
be executed within the same instant. The algorithm for instantaneous statement
reachability computes for a source and a target node whether the target is reachable
instantaneously from the source. Source and target have to be in sequence to each
other, i. e., not concurrent, to get correct results.

In simple cases like EMIT or PAUSE the sequential control flow successor is ex-
ecuted in the same instant respectively next instant, but in general the behavior
is more complicated. The parallel, e. g., will terminate instantaneously if all sub-
threads are instantaneous or an EXIT will be reached instantaneously; it is not-
instantaneous if at least one sub-thread is not instantaneous.
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The complete algorithm is presented in detail elsewhere [4]. The basic idea is to
compute for each node three potential reachability properties: instantaneous, not-
instantaneous, exit-instantaneous. Note that a node might be as well (potentially)
instantaneous as (potentially) non-instantaneous, depending on the signal status.
Computation begins by setting the instantaneous predicate of the source node to
true and the properties of all other nodes to false. When any property is changed,
the new value is propagated to its successors. If we have set one of the properties
to true, we will not set it to false again. Hence the algorithm is monotonic and
will terminate. Its complexity is determined by the amount of property changes
which are bounded to three (three boolean) for all nodes, so the complexity is
O(3 ∗ |Nodes|) = O(|Nodes|).

The most complicated computation is the property instantaneous of a join node
because several attributes have to be fulfilled for it to be instantaneous:

• For each thread, there has to be a (potentially) instantaneous path to the join
node.

• The predecessor of the join node must not be an EXIT, because EXIT nodes are
no real control flow predecessors. At the Esterel level, an exception (exit) causes
control to jump directly to the corresponding exception handler (at the end of
the corresponding trap scope); this jump may also cross thread boundaries, in
which case the threads that are jumped out of and their sibling threads threads
terminate. To emulate this at the KEP level, an EXIT instruction does not jump
directly to the exception handler, but first executes the JOIN instructions on
the way, to give them the opportunity to terminate threads correctly. If a JOIN

is executed this way, the statements that are instantaneously reachable from it
are not executed, but control instead moves on to the exception handler, or to
another intermediate JOIN. To express this, we use the third property besides
instantaneous and non-instantaneous: exit-instantaneous.

Roughly speaking the instantaneous property is propagated via for-all quanti-
fier, not instantaneous and exit instantaneous via existence-quantifier.

Most other nodes simply propagate their own properties to their successors.
The delay node propagates in addition its non-instantaneous predicate to its de-
layed successors and exit nodes propagate exit-instantaneous reachability, when
they themselves are reachable instantaneously .

4.3 General WCRT Algorithm

The general algorithm, which can also handle concurrency, is shown in Figure 6.
It emerges from the sequential algorithm that has been described in Section 4.1 by
enhancing it with the ability to compute the WCRT of fork and join nodes. Note
that the instantaneous WCRT of a join node is needed only by a fork node, all
transient nodes and delay nodes do not use this value for their WCRT. The WCRT
of the join node has to be accounted for just once in the instantaneous WCRT of
its corresponding fork node, which allows the use of a DFS-like algorithm.

The instantaneous WCRT of a fork node is simply the sum of the instantaneously
reachable statements of its sub-threads, plus the PAR statement for each sub-thread
and the additional PARE statement.

11
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1 int getWcrt(g) // Compute WCRT for a CKAG g

2 forall n ∈ Nodes do n.inst := n.next := ⊥ end
3 forall d ∈ DelayNodes do getNext(d) end
4 forall j ∈ JoinNodes do getNext(j) end // Visit according to hierarchy (inside out)

5 return max ({getInst(g.root)}
S
{n.next : n ∈ DelayNodes ∪ JoinNodes})

6 end

1 int getInst (n) // Compute statements instantaneously reachable from node n

2 if n.inst = ⊥ then
3 if n ∈ TransientNodes ∪ LabelNodes then
4 t.inst := max {getInst(c) : c ∈ suc c \ JoinNodes} + cycles(n.stmt)

5 elif n ∈ DelayNodes then
6 n.inst := max {getInst(c) : c ∈ suc w ∪ suc e \ JoinNodes} + cycles(n.stmt)

7 elif n ∈ ForkNodes then
8 n.inst :=

P
t∈n.suc c t.inst + cycles(n.par stmts) + cycles(PARE)

9 prop := reachability(n, n.join) // Compute instantaneous reachability of join from fork

10 if prop.instantaneous or prop.exit instantaneous then
11 n.inst += getInst(n.join)

12 elif prop.not instantaneous then
13 n.inst += cycles(JOIN) // JOIN is always executed

14 fi
15 elif n ∈ JoinNodes then
16 n.inst := max{getInst(c) : c ∈ suc c ∪ suc e} + cycles(n.stmt);

17 fi
18 fi
19 return n.inst

20 end

1 int getNext(n) // Compute statements instantaneously reachable from delay node d at tick start

2 if n.next = ⊥ then
3 if n ∈ DelayNodes then
4 n.next := max {getInst(c) : c ∈ suc c ∪ suc s \ JoinNodes} + cycles(n.stmt)

5 elif n ∈ JoinNodes and (n.fork, n).not instantaneous then
6 n.next := n.inst +

P
t∈n.fork.suc c max{n.next : t.id = n.id}

7 fi
8 fi
9 return n.next

10 end

Fig. 6. General WCRT algorithm.

Like delay nodes, join nodes also have a next value. When a fork/join pair
(f, j) could be non-instantaneous then we have to compute a WCRT j.next for the
next instants analogously to the delay nodes. Its computation requires first the
computation of all sub-thread next WCRTs. Then we simply sum the maximum
value for every thread. If the parallel does not terminate instantaneously, all directly
reachable states are reachable in the next instant. Therefore we have to add the
execution time for all statements that are instantaneously reachable from the join
node. Note that the computation is independent from the scheduling.

The whole algorithm computes first the next WCRT for all delay and join nodes;
it computes recursively all needed inst values. Thereafter the instantaneous WCRT
for all remaining nodes is computed. The result is simply the maximum over all
computed values.

Consider the example in Figure 2. First we note that the fork/join pair is always
non-instantaneous, due to the cycles(PAUSEL6) statement. We compute L6.next =
cycles(PAUSEL6) + cycles(EMITL7) = 2. From the fork node L3, the PAR and PARE
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statements, the instantaneous parts of both threads and the JOIN are executed,
hence L3.inst = 2 × cycles(PAR) + cycles(PARE) + cycles(JOIN) + L4.inst + L5.inst =
2 + 1 + 1 + 1 + 2 = 7. Therefore, the WCRT of the program is L8.next = L6.next +
L8.inst = 2 + 9 = 11. Note that the JOIN statement is executed twice.

A known difficulty when compiling Esterel-programs is that due to nesting of
exceptions and concurrency, statements might be executed multiple times in one
instant. This problem, also known as reincarnation, is handled correctly by our
algorithm. Since we compute nested joins from inside to outside, the same state-
ment may effect both the instantaneous and non-instantaneous WCRT, which are
added up in the next join. This exactly matches the possible control-flow in case of
reincarnation. Even when a statement is executed multiple times in an instant, we
compute a correct upper bound for the WCRT.

Regarding the complexity of the algorithm, let n := |Nodes|, d := |DelayNodes|,
f := |ForkNodes| and j := |JoinNodes|. For each node its WCRT’s inst and next
are computed at most once, and for all fork nodes a fork-join reachability analysis
is additionally made, which has itself O(n). So we get altogether a complexity of
O(n + d + j) + O(f ∗ n) = O(2 ∗ n) + O(n2) = O(n2).

5 Experimental Results

The WCRT analysis is implemented in the KEP compiler. It automatically inserts a
correct EMIT TICKLEN instruction at the beginning of the program. To validate our
approach, we used Esterel-Studio to generate test cases for Esterel programs, which
cover all states and transitions. The programs were executed on the KEP with the
test cases as input. We measured the maximal reaction time during these executions
and compared it to the computed value. The Esterel programs in Table 1 are taken
from the Estbench [6]. We never underestimated the WCRT, and our results are on
average 38% too high. For each program, the lines of code, the computed WCRT
and the measured WCRT with the resulting difference is given. We also give the
average WCRT analysis time on a standard PC (AMD Athlon XP, 2.2GHz, 512 KB
Cache, 1GB Main Memory); as the table indicates, the analysis takes only a couple
of milliseconds.

The table also compares the Average Case Reaction Time (ACRT) with the
WCRT. The ACRT is on average about two thirds of the WCRT, which is relatively
high compared to traditional architectures. In other words, the worst case on the
KEP is not much worse than the average case, and padding the tick length according
to the WCRT does not waste too much resources. On the same token, designing for
worst-case performance, as typically must be done for hard real-time systems, does
not cause too much overhead compared to the typical average-case performance
design. Finally, the table also lists the number of scenarios generated by Esterel-
Studio and accumulated logical tick count for the test traces.

6 Conclusions and Further Work

We have presented the WCRT analysis of reactive programs written in the Esterel
language. The analysis is performed on a graph representation, the Concurrent KEP
Assembler Graph (CKAG). In a first step we compute whether concurrent threads
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Module name LoC WCRT tan ACRT Test Ticks

WCest WCact rest−act [ms] ACact AC/WC cases

abcd 152 56 44 27% 1.0 28 64% 161 673

abcdef 232 84 68 24% 1.5 42 62% 1457 50938

eight buttons 312 112 92 22% 2.0 57 62% 13121 45876

channel protocol 57 49 38 29% 0.4 19 50% 114 556

reactor control 24 24 15 60% 0.2 12 80% 6 20

runner 26 10 7 43% 0.3 4 57% 131 2548

tcint 410 192 138 39% 2.8 86 62% 148 1325

Table 1
Experimental results. The WCest and WCact data denote the estimated and actual

WCRT, respectively, measured in instruction cycles. The ratio
rest−act := WCest/WCact − 1 indicates by how much our analysis overestimates the

WCRT. ACact is the actual Average Case Reaction Time (ACRT), AC/WC
(= ACact/WCact) gives the ratio to the WCRT. Test cases and Ticks are the number of

different scenarios and logical ticks that were executed, respectively.

terminate instantaneously, thereafter we are able to compute for each statement
how many instruction are maximally executable from it in one logical tick. The
maximal value over all nodes gives us the WCRT of the program. The analysis
considers concurrency and the multiple forms of preemption that Esterel offers. The
asymptotic complexity of the WCRT analysis algorithm is quadratic in the size of
the program; however, experimental results indicate that the overhead of WCRT
analysis as part of compilation is negligible. We have implemented this analysis
as part of a compiler from Esterel to KEP assembler, and use it to automatically
compute an initialization value for the KEP’s TickManager. This allows to achieve
a high, constant response frequency to the environment, and can also be used to
detect hardware errors by detecting timing overruns.

Our analysis is safe, i. e., conservative in that it never underestimates the WCRT,
and it does not require any user annotations to the program. In our benchmarks it
overestimates the WCRT on average by about 40%. This is already competitive with
the state of the art in general WCET analysis, and we expect this to be acceptable
in most cases. However, there is still significant room for improvement. So far, we
are not taking any signal status into account, therefore our analysis includes some
unreachable paths. Considering all signals would lead to an exponential growth
of the complexity, but some local knowledge should be enough to rule out most
unreachable paths of this kind. Also a finer grained analysis of which parts of
parallel threads can be executed in the same instant could lead to better results.
However, it is not obvious how to do this efficiently.

Our analysis is influenced by the KEP in two ways: the exact number of in-
structions for each statement and the way parallelism is handled. At least for
non-parallel programs our approach should be of value for other compilation meth-
ods for Esterel as well, e. g., simulation-based code generation. A virtual machine
with similar support for concurrency could also benefit from our approach. We
would also like to generalize our approach to handle different ways to implement
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concurrency. A WCRT analysis directly on the Esterel level gives information on
the longest possible execution path. Together with a known translation to C, this
WCRT information could be combined with a traditional WCET analysis, which
takes caches and other hardware details into account.
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Appliquées Ecole des Mines and INRIA, 06565 Sophia-Antipolis, 2000.

[4] Boldt, M. Worst-case reaction time analysis for the KEP3. Study thesis, Christian-
Albrechts-Universität zu Kiel, Department of Computer Science, Nov. 2007. To
appear.

[5] Burns, A., and Edgar, S. Predicting computation time for advanced processor
architectures. In Proceedings of the 12th Euromicro Conference on Real-Time
Systems (EUROMICRO-RTS 2000) (2000).

[6] Estbench Esterel Benchmark Suite. http://www1.cs.columbia.edu/~sedwards/
software/estbench-1.0.tar.gz.

[7] Closse, E., Poize, M., Pulou, J., Venier, P., and Weil, D. SAXO-RT: Interpreting
Esterel semantic on a sequential execution structure. In Electronic Notes in
Theoretical Computer Science (July 2002), F. Maraninchi, A. Girault, and E. Rutten,
Eds., vol. 65, Elsevier.

[8] Edwards, S. A. CEC: The Columbia Esterel Compiler. http://www1.cs.columbia.
edu/~sedwards/cec/.

[9] Edwards, S. A. An Esterel compiler for large control-dominated systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 21, 2
(Feb. 2002).

[10] Edwards, S. A. Tutorial: Compiling concurrent languages for sequential processors.
ACM Transactions on Design Automation of Electronic Systems 8, 2 (Apr. 2003),
141–187.

[11] Edwards, S. A., Kapadia, V., and Halas, M. Compiling Esterel into static discrete-
event code. In International Workshop on Synchronous Languages, Applications, and
Programming (SLAP’04) (Barcelona, Spain, Mar. 2004).

[12] Harel, D., and Pnueli, A. On the development of reactive systems. Logics and
models of concurrent systems (1985), 477–498.

[13] Li, X., Boldt, M., and von Hanxleden, R. Mapping Esterel onto a multithreaded
embedded processor. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS) (San Jose, CA, USA, October 21–25 2006).

15

SLA++P 2007 Preliminary Version 35

http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/cec/
http://www1.cs.columbia.edu/~sedwards/cec/


M.Boldt, C.Traulsen and R. v.Hanxleden

[14] Li, X., Lukoschus, J., Boldt, M., Harder, M., and von Hanxleden, R. An
Esterel Processor with Full Preemption Support and its Worst Case Reaction Time
Analysis. In Proceedings of the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES) (New York, NY, USA, Sept. 2005),
ACM Press, pp. 225–236.

[15] Li, X., and von Hanxleden, R. A concurrent reactive Esterel processor based on
multi-threading. In Proceedings of the 21st ACM Symposium on Applied Computing
(SAC’06), Special Track Embedded Systems: Applications, Solutions, and Techniques
(Dijon, France, April 23–27 2006).

[16] Logothetis, G., and Schneider, K. Exact high level WCET analysis of synchronous
programs by symbolic state space exploration. In Design, Automation and Test in
Europe (DATE) (Munich, Germany, March 2003), IEEE Computer Society, pp. 196–
203.

[17] Logothetis, G., Schneider, K., and Metzler, C. Exact low-level runtime analysis
of synchronous programs for formal verification of real-time systems. In Forum on
Design Languages (FDL) (Frankfurt, Germany, 2003), Kluwer.

[18] Malik, S., Martonosi, M., and Li, Y.-T. S. Static timing analysis of embedded
software. In DAC ’97: Proceedings of the 34th annual conference on Design
automation (1997), ACM Press, pp. 147–152.

[19] Potop-Butucaru, D., and de Simone, R. Optimization for faster execution of Esterel
programs. Kluwer Academic Publishers, Norwell, MA, USA, 2004, pp. 285–315.

[20] Puschner, P., and Burns, A. A review of worst-case execution-time analysis
(editorial). Real-Time Systems 18, 2/3 (2000), 115–128.

[21] Ringler, T. Static worst-case execution time analysis of synchronous programs. In
ADA-Europe- 5. International Conference on Reliable Software Technologies (2000).

[22] Roop, P. S., Salcic, Z., and Dayaratne, M. W. S. Towards Direct Execution of
Esterel Programs on Reactive Processors. In 4th ACM International Conference on
Embedded Software (EMSOFT 04) (Pisa, Italy, Sept. 2004).

[23] Tardieu, O., and de Simone, R. Instantaneous termination in pure Esterel. In Static
Analysis Symposium (San Diego, California, June 2003).

16

36 SLA++P 2007 Preliminary Version



3. Executable Specifications for Real-Time Distributed
Systems

Arnab Ray1, and Rance Cleaveland2

1 Fraunhofer USA Center for Experimental Softare Engineering,
University of Maryland at College Park, USA
2 Department of Computers Science,
University of Maryland at College Park, USA

Notes:

SLA++P 2007 Preliminary Version 37

Rectangle



38 SLA++P 2007 Preliminary Version



Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Executable Specifications for Real-Time
Distributed Systems

Arnab Ray 1

Fraunhofer USA Center for Experimental Software Engineering
University of Maryland at College Park

4321 Hartwick Road Suite 500
College Park MD 20742-3290

Rance Cleaveland 2

Department of Computer Science
University of Maryland at College Park

AV Williams Building
College Park MD 20742

Abstract

One of the challenges in designing distributed, embedded systems is the paucity of formal, executable
specification notations that provide support for both real-time and asynchronous communication. This
paper describes a timed architecture design language (Timed Architecture Interaction Diagrams or TAID)
that, by virtue of its formal, executable semantics, combines the benefits of synchronous specification
notations with the advantages of traditional architecture description languages. In addition, TAID provides
support for a variety of temporal inter-process communication (IPC) primitives as a native feature of the
language, so that the encapsulated communication behavior (captured by real-time ”buses” in TAID) may
be re-used across designs and serve as specifications for more detailed model implementations.

Keywords: Software Architecture, Real-time, Simulations, Formal Methods, Distributed Systems.

1 Introduction

Software architectures have emerged as important artifacts of the software design
process, as they support better system comprehension [12], pre-implementation
analysis [16], identification of units of reuse [17] and product-line engineering [2],
among other development activities. The research community has developed sev-
eral formalisms for expressing architectural designs: WRIGHT [13], TRACTA [4],
AADL [6], Rapide [11], and AID [15] to name a few. These notations seek to pro-
vide a (semi-)formal modeling framework wrapped inside an intuitive and expressive
design language. Of these AID (Architectural Interaction Diagrams) distinguishes
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itself by virtue of its ability to define different inter-process communications (IPC)s
as native features of the language, thus facilitating concise and re-usable system
specifications.

Most software architecture notations describe system behavior as a causal se-
quence of events (e.g A causes B). This makes them insufficiently expressive when it
comes to describing real-time embedded systems, where precise temporal constraints
between actions (e.g. A causes B within 5 seconds of A ) need to be encoded. No-
tations like AADL do include real time, but do not have a formal semantics. In
contrast, foundational synchronous notations such as timed process algebras [5] pro-
vide a rich formal framework for describing real-time systems, but these theories
are often considered to be too abstract/high-level to be used for realistic system
specifications.

This paper demonstrates how, by using ideas from timed process algebras, we
may add a notion of discrete time to a non-timed architecture specification language
(AID), resulting in Timed Architectural Interaction Diagrams (TAID). TAID is an
executable notation that combines the theoretical rigor of timed process algebra
with the user-friendliness of an architecture description language. In TAID, com-
munication is defined through semantic devices called buses, which may be re-used
across designs and serve as an abstract specification for a more detailed model
implementation in notations like Simulink R©/Stateflow R©.

The utility of TAID specifications is that they provide a unified formalism for
representing the entire system (both components as well as connectors), thus allow-
ing embedded software engineers the flexibility of performing system simulations on
a desktop computer. This leads to large savings of time and money that traditional
embedded-system design processes incur, with their emphasis on prototyping, net-
working testbeds and hardware-in-the-loop testing as virtually the only strategy for
design verification and validation.

The paper is arranged as follows. Section 2 outlines the basic concepts of the
non-timed architecture design language, Architectural Interaction Diagrams (AID)
which this paper extends to create a timed design language: Timed Architectural
Interaction Diagrams (TAID) (Section 3). We then illustrate out formalism with
two examples of timed inter-process communication. Section 5 details related work,
and Section 6 concludes the paper.

2 Background: Architectural Interaction Diagrams

,

put, get : Gates i,r,o,rd,i’,r’,o’,bp,bp’,qp,qp’ : Ports

qp’qp
bp bp’

Consumer : AID ,C Cb,q: Buses 21

1 2

o i’ o’

r

b
C C

reset

getput
rd
Consumer

q

r’

i

Fig. 1. A sample architecture

This section introduces some of the different elements that constitute a AID
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architecture. From Figure 1, one may identify the following concepts: 1) AIDs
describing subsystems/components; 2) interfaces, containing read and write ports
(each port is a conduit point for data for the subsystem surrounding the interface);
3) connections between ports in a subsystem and ports in an interface (cf. the
dotted lines in Figure 1) called gates, which enable one to selectively expose ports
in an inner AID; 4) buses, the “connectors” through which subsystems communicate
with each other; 5) links from interface ports to buses.

The execution semantics of AID are formalized in terms of a transition relation
describing system-level execution steps. At the lowest level, an AID component is a
state machine that comprises states and transitions. It can perform write transitions
(i.e. output a value to a “write” port), read transitions (ie read in a value from a
“read” port), or an internal transition.

In the remainder of the section, we provide formal definitions for some of the
concepts on which TAID is based on. Let us first define formally what ports are.

• W is an infinite set of write ports.
• R is an infinite set of read ports, with R ∩W = ∅.
• V is a nonempty set of values.

Intuitively, W and R contain all the possible port names that may be used to define
a given system, while V contains all the values that may be used. Our focus is
on interaction rather than data manipulation, so we do not impose any additional
structure on V.

We also use the following definitions in what follows.

• O = {w!v | w ∈ W, v ∈ V} is the set of output actions.
• I = {r? | r ∈ R} is the set of input actions.

The sets O and I represent interactions that a system may engage in with its envi-
ronment: outputting, and inputting.

2.1 I/O Labeled Transition Systems

The basic components of the AID theory are I/O labeled transition systems (IOLTSs).
These are defined as follows.

An I/O labeled transition system (IOLTS) is a tuple 〈Q,T, q0〉, where Q is a set
of states, q0 ∈ Q is the start state, and T = Twrite∪Tread∪Tinternal is the transition
relation such that:

(i) Twrite ⊆ Q×O×Q,

(ii) Tread ⊆ Q× I× (V −→ Q),

(iii) Tinternal ⊆ Q×Q.

An IOLTS encodes the operational behavior of a system, with Q being the set
of system states and q0 the initial state. State transitions may take one of three
forms.

• An output transition 〈q, w!v, q′〉 ∈ Twrite indicates a state change from q to q′

when value v is written out to the environment on write port w.

3
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• An input transition 〈q, r?, f〉 ∈ Tread, f is a function mapping values to states.
This transition indicates a state change from q to f(v) if the system’s environment
supplies value v on read port r.

• An internal transition 〈q, q′〉 ∈ Tinternal represents an execution step that the
system can engage in without any interaction with its environment.

An IOLTS P also has an interface I(P ) ⊆ W ∪R containing the write and read
ports used by transitions in P . We also write Q(P ) for the set of states for IOLTS
P and q0(P ) fot the start state of P .

2.2 Buses

Buses are the most critical elements of the AID paradigm. Mathematically, they
can be seen as transducers that convert transitions of incident components (i.e.
components that are connected to them) to system-level transitions. As such, they
have two responsibilities: the transfer of data between senders and receivers, and
the synchronization of sender/receiver transitions.

Formally, a bus in AID has form 〈I,B, binit, T 〉, where I is the interface, B is the
set of of bus states, binit is the initial bus state, and the transition relation T contains
a single kind of transition – communication — which represents an instantaneous
transfer of data among incident components. A communication transition of a bus
M is written as:

b
W RV

WV R

−→Mb′.

The way to read this transition is as follows: “if the bus is in state b, and sub-
systems connected to the bus enable write transitions as indicated in WV and read
transitions as enabled in R, then the bus fires read transitions as indicated in RV

and write transitions as indicated in W and goes to state b′.” This firing of selected
read and write transitions in systems connected to the bus is also done atomically:
thus one bus transition may consume several transitions from the components con-
nected to it. Also, writing to a bus is interpreted with respect to components
connected to a bus: so write ports on a subsystem are connected to write ports on
a bus, and similarly for read ports.

The sets WV , R, W and RV deserve further comment. WV contains pairs of
the form 〈w, v〉, where w is a write port on the bus and v is a value. Intuitively
〈w, v〉 ∈ WV if there is a writer connected to the bus on its port w that wishes
to write value v to it. Similarly, r ∈ R means that there is a reader connected
to the bus on its port r that is interested in reading. The bus then, out of these
enabled transitions, chooses writers whose port values are stored in W and readers
as indicated by RV where 〈r, v〉 ∈ RV if reader connected to port r gets value v.

Like we had in the definition of IOLTS, B(N) returns the set of bus states for a
bus N and b0(N) the start state of N .

2.3 Architecture Interaction Diagrams

An architecture interaction diagram (AID) is either:

4
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(i) an IOLTS P , with an interface I(P ); or

(ii) a network N = 〈C̄, M̄ , L〉, where:
(a) C̄ = 〈C1, . . . , Cn〉 is a tuple of components, where each Ci = 〈Si, Ii, Gi〉

consists of an AID Si, an interface Ii, and a gate definition Gi (the formal
definition of gate may be found in [15]);

(b) M̄ = 〈M1, . . . Mk〉 is a tuple of buses; and
(c) L is the set of links. Each link connects a component port with a port on a

bus. Interested readers may refer to the formal definition of links in [15].
It should be noted that for the purpose of the paper, the basic intuition
behind links and gates is all that is necessary.

Intuitively, a network contains a list of components, each containing a subsystem
description, an interface, and a gate definition that defines how the ports of the
subsystem are connected to the interface. It also contains a list of buses and a link
set connecting component ports to bus ports so that write ports are connected to
write ports, and read ports to read ports, and each port (bus or component) has at
most one link to it.

Mathematically, we define the semantics in the Structural Operational Semantic
(SOS) style. The definition of the transition relation of an AID is given inductively
using inference rules that explain how transitions of subsystems are combined to
form transitions of systems.

More precisely, given an AID N the semantics associates with N an IOLTS
〈QN , TN , qN 〉 describing the operational behavior of N . If N = 〈Q,T, q0〉 is itself
an IOLTS, the association is obvious: take QN = Q,TN = T and qN = q0.

Now suppose that N = 〈C̄, M̄ , L〉. What should QN , TN and qN be? In the
case of QN , each system state should record current state information for each
component and bus, and the initial state should contain the initial states of each
component and bus. This leads to the following.

Let N = 〈〈C1, . . . , Cn〉, 〈M1, . . . ,Mk〉, L〉 be a network AID. Then:

(i) QN = CN ×MN , where:

CN = {〈q1, . . . , qn〉 | qi ∈ Q(Si)}
MN = {〈b1, . . . , bk〉 | bi ∈ B(Mi)}

(ii) qN = C0
N×M0

N , where C0
N = 〈q0(S1), . . . , q0(Sn)〉 and M0

N = 〈b0(M1), . . . , b0(Mk)〉.

Thus, the states for N ’s IOLTS consists of a state vector for N ’s components
and another state vector for N ’s buses, with the start state for N containing the
start states for each component and bus. We often represent these states as pairs
〈s̄, b̄〉, where s̄ and b̄ are the subsystem- and bus-state vectors, respectively.

TN is defined by providing SOS rules that allow us to deduce the set of transitions
of N from the transitions of its constituent components and buses as obtained from
the structure of N . The SOS rules for AID is given in [15]

3 Timed Architectural Interaction Diagrams

In this section, we define the syntax and the semantics of TAID by augmenting
the syntactic and semantic framework used for defining AID. Using concepts from

5

SLA++P 2007 Preliminary Version 43



Ray

timed process algebra [5], TAID can be “layered” on top of the original language
without modifying the semantics of the original theory. In other words, the addi-
tional semantics that is needed to encode time can be seamlessly superposed on the
original theoretical framework. In this paper, we provide the semantics for only
that incremental part that provides support to time. For a formal definition of the
terms used and the semantics for the untimed part of TAID, the interested reader
is invited to consult [15].

3.1 Timed Input-Output Labelled Systems

In TAID, we extend the original definition of IOLTSs to include time transitions
(we call these T-IOLTS). A time transition may be thought of as a “clock tick”
representing the passage of time.

In timed process algebra time transitions are typically required to satisfy two
conditions.

Maximal progress. Time transitions are disabled when internal transitions are
possible.

Time determinacy. At most one time transition is possible in any state.

The reason for these assumptions is to separate the modeling of the passage of
time from the modeling of system interaction. Maximal progress guarantees that
an action must occur as soon as all participants are ready to do it. In other words,
enabled actions may not be delayed for even a single clock tick. Time determinacy
ensures that the only ambiguity about the state a system can be in is due to the
actions it performs, not just the passage of time. A fuller discussion of these issues
may be found in [1].

Mathematically, the transition relation of a T-IOLTS P has a component Ttick ⊆
Q × Q, where Q is the set of states of P . Ttick is also required to satisfy two
conditions that are given below. In order to define these, we introduce the following
notations. We write Ttick(P ) for the clock-transition relation of P and q

1−→P q′

when 〈q, q′〉 ∈ Ttick(P ). When P is evident from context, we write simply q
1−→ q′.

We also use q
1−→ if there is a q′ such that q

1−→ q′ and q 6 1−→ when this is not the
case. The notation q 6 τ−→ is used similarly, and when this holds of state q we refer
to q as stable.

We can now formulate the properties that Ttick(P ) must satisfy for T-IOLTS P .
Recall that Q(P ) is the set of states in P .

Maximal progress. ∀q ∈ Q(P ). q
1−→ implies q 6 τ−→

Time enabledness. Time is always enabled in stable states.
∀q ∈ Q(P ). q 6 τ−→ implies q

1−→

Time determinacy. ∀q ∈ Q(P ). q
1−→ q′ and q

1−→ q′′ implies q′ = q′′

3.2 Timed Buses

Recall from the last section that buses were defined by a set of bus states (B), an
interface (I), an initial bus state (binit) and only one kind of transition—untimed

6
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communication. In TAID, besides communication transitions, buses contain timed
transitions of the form Ttick ⊆ B × B, where B is the set of bus states. We write
timed transitions as

b
1

−→Mb′

and b
1

−→M if there exists a b′ such that b
1

−→Mb′.
States in AID buses do not have τ -transitions, and thus maximal progress is

not an issue for Ttick relations in buses. We do require time determinacy and time-
enabledness, however; each bus state is required to have exactly one time transition.
Assuming M is a timed bus and B(M) its set of states, we write this condition as
follows.

∀b ∈ B(M). ∃!b′ ∈ B(M). b
1

−→Mb′

3.3 TAID

Given the notions of T-IOLTS and timed bus, we may now formally introduce Timed
Architectural Interaction Diagrams (TAIDs). The definition closely follows that of
AID given in Section 2.3. Specifically, a TAID is either:

(i) a T-IOLTS P with interface I(P ); or

(ii) a network 〈C,M , L〉, where C is a vector of components, M is a vector of
timed buses, and L is a link relation.

The definitions of component, interface, link, etc. do not change, except that com-
ponents now include TAIDs instead of AIDs, in addition to inteface and gate spec-
ifications.

3.4 TAID Semantics

As with AID, the semantics of TAID with associate with each TAID N a T-IOLTS
〈QN , TN , qN 〉 describing the operational behavior of N . The structure of a TAID
state (i.e, QN ) is defined recursively on the structure of N as done for AID in
Section 2.3. For TN , we use all the SOS rules for AID [15] and add to it another
SOS rule (given below) that defines the timing behavior of N in terms of the timing
behavior of its constituent components and buses. More precisely the rule will
allow a network to do a clock tick only if all the components and all the buses
that constitute the network can do a clock transition, and if there is no enabled
communication between a component and a bus inside the network.

SOS rules have the following general form.

Premises
Conclusion

Intuitively, a rule states that when the premises are true, the conclusion holds. In
our case, a conclusion will state the existence of an element of the transition relation,
TN , while the premises will refer to transitions of subsystems and buses as well as
conditions about the structure of N .

Now let us define some auxiliary notations that will enable us to define the new

7
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SOS rule.

• Recall that a bus M includes a timed transition relation Ttick ⊆ B ×B, where B

is the set of states of M , with the property that if b ∈ B then there is a unique b′

such that 〈b, b′〉 ∈ Ttick. We may therefore define function CT (b, M) which, given
bus state b, returns the b′ such that 〈b, b′〉 ∈ Ttick.

• Let us now define a function NSAT (“NextStateAfterTick”) that, given a TAID
state and a TAID, outputs the next state of the TAID after a clock tick has taken
place.

Mathematically, NSAT is a function (QN × N) −→ QN that is defined as
follows.

If N is a T-IOLTS of form 〈Q,T, q〉 then

NSAT (q, N) =

 q′ if q
1

−→Nq′ ∈ T

undefined otherwise

If N is a network of form 〈C̄, M̄ , L〉, where C = 〈〈S1, I1, G1〉, . . . , 〈Sn, In, GN 〉〉
and M = 〈M1, . . . ,Mk〉, and s = 〈s1, . . . , sn〉 and b = 〈b1, . . . , bk〉, then

NSAT (〈s̄, b̄〉, N) =
〈〈NSAT (s1, S1), . . . , NSAT (sn, Sn)〉,

〈CT (b1,M1), . . . , CT (bk,Mk)〉〉 if for all i, NSAT (si, Si) is defined

undefined otherwise

• A state s in TAID N is said to be stable if it cannot perform any τ transitions,
i.e. Stable(s,N) iff s 6 τ−→N

The SOS rule may now be given as follows.

Stable(q, N)

q
1−→N NSAT (q, N)

This SOS rule states that if a network cannot perform any internal transitions,
only then can it take a clock tick. We may now prove the following.

Lemma 3.1 Let N be a TAID and q be a stable state of N . Then NSAT (q, N) is
defined.

The lemma is useful in proving the following theorems. It also guarantees that
the T-IOLTS associated with a TAID N is time-enabled.

Theorem 3.2 Let N be a TAID. Then the T-IOLTS associated with N satisfies
time determinacy.

Theorem 3.3 Let N be a TAID. Then the T-IOLTS associated with N satisfies
maximal progress.

The truth of these statements may be inferred from the definition of NSAT , the
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restrictions imposed on T-IOLTSs and timed buses, and the fact that the SOS rule
is the only one that can be used to infer clock-tick transitions for TAIDs.

Fig. 2. A TAID execution example

Let us illustrate the concepts introduced in this section with a small example
(Figure 2) of a very simple unit-delay handshake where the writer and reader block
till communication is finished. Here we have a TAID network consisting of 2 T-
IOLTSs and a bus that connects them. One of the T-IOLTS that has the port w′ is
executing a write transition labeled by w′!v (to be read as: output value v to port
w′); this w′ port is connected to the w port of the bus via a link. The other T-IOLTS
has a port r′ (connected via a link to bus port r) where the T-IOLTS in question
collects the value from the bus by virtue of the transition labeled by r′?. The states
colored black represent the states where control presently resides. The bus initially
has a transition from its initial state (binit) to state b0; in this transition (whose
labels are omitted), the bus blocks a reader or writer until its partner is ready and
then permits a synchronization of the read and write transitions. The bus then
delays for one clock tick before cycling back to its initial state.

Initially in configuration (a) in Figure 2, control resides in states a and c of the
writing and reading T-IOLTS and in state binit for the bus. A bus communication
transition takes place (denoted by the τ transition) wherein the control inside the
bus passes to b0; the reader and writer also change state, and the value v is trans-
mitted to the reader. In (b), the system as a whole takes a clock tick (denoted
by 1); the reader and writer remain in the given states, while control in the bus
passes from b0 back to binit. Symbolically, this entire sequence of actions can be

9
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Table 1
Synchronous handshake bus 〈I, Bδ , binit, T 〉 with δ delay

I = 〈W, R〉
Bδ = {binit, berr}

⋃
{〈i, w, r, v〉 | i ∈ {0..δ}, v ∈ V, w ∈ W, r ∈ R}⋃

{bi,w,r,v | i ∈ {0..δ}}
T is defined as follows.

(i) binit
W RV

WV R
−→〈0, w, r, v〉 iff 〈w, v〉 ∈ WV ∧ r ∈ R ∧W = ∅ ∧RV = ∅

(ii) 〈i, w, r, v〉
W RV

WV R
−→bi,w,r,v iff i < δ ∧ 〈w, v〉 ∈ WV ∧ r ∈ R

(iii) bi,w,r,v
1

−→〈i + 1, w, r, v〉

(iv) 〈i, w, r, v〉
W RV

WV R
−→berr iff 〈w, v〉 6∈ WV ∨ r 6∈ R

(v) 〈δ, w, r, v〉
W RV

WV R
−→binit iff 〈w, v〉 ∈ WV, r ∈ R ∧W = {w} ∧RV = {〈r, v〉}

(vi) 〈δ, w, r, v〉
W RV

WV R
−→berr iff 〈w, v〉 6∈ WV ∨ r 6∈ R

represented thus:

〈a, binit, c〉
τ−→ 〈b, b0, d〉

1−→ 〈b, binit, d〉

4 Modeling Communication Primitives Using TAID

4.1 Timed Bi-party Handshake

The first example we consider is a bi-party handshake communication that takes δ

time units to execute. In this kind of communication, there is no limit on how many
subsystems are allowed to use the bus. The bus requires all senders and receivers
to block until an exchange of data between one selected writer and selected reader
occurs, after which the selected writer and reader are free to continue executing.
This transfer of data consumes δ time.

In this semantics, the sequence of events are:

(i) The bus chooses a writer and a reader among the writers and readers who want
to use the bus.

(ii) At each instant of time, the bus checks to see if either of the reader or the
writer timed out, i.e. is no longer interested in the communication it initiated.
If that is the case, then the bus transitions to an error state.

(iii) Once the delay is finished and the original writer and reader both are still
enabled for the communication, the bus finishes the handshake and releases
the writer and reader. Anything else causes the bus to transition to the error
state.

Note that the semantics of timed handshake is different from the semantics of a
FIFO queue with capacity 1 and propagation delay 1 because in a FIFO, a writer
writes to the FIFO and is immediately unblocked while here, the writer remains
blocked till a reader has read the value.

10
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The responsibility of any bus that implements a timed handshake is twofold: 1)
transfer data between a writer and a reader 2) enforce the blocking of the chosen
writer and reader for the duration of the handshake. Since it is not possible for any
communicating medium to physically block a writer and reader (since they may
always execute a time-out transition), the bus should not complete any interaction
where at some time during the δ delay, either the writer or the reader timed out.
As a result, when a successful handshake is completed, we can then automatically
deduce that the writer and the reader were indeed blocked for δ time units.

The bus definition is provided in in Table 1. The first line in the table indicates
that the bus’s interface has a set W of write and a set R of read ports. The second
line in the table defines the bus states. There are two distinguished bus states: binit

(the initial state) berr (the error state) in addition to 1) a set of general bus states,
each of which is a tuple that contains a variable i i.e. the number of clock ticks
already elapsed at that state, a variable w that stores the value of the selected write
port, a variable v that stores the data value obtained from w and a variable r that
contains the value of the read port selected 2) a set of “trap” states of the form
bi,w,r,v which are the states at which the bus can perform a clock tick.

Rule 1 states that if there exists at least one writer and a reader, then a writer is
chosen along with its value as also a reader and stored in the bus state. The counter
representing time elapsed since initiation of communication is set to 0. Rule 2 says
that if the chosen writer and reader are present in the set of enabled writers and
readers respectively, and the upper limit of the counter (i.e. δ) has not been reached,
then the bus transitions to a state where it is allowed to perform a tick (vide Rule
3). If however, the writer or reader has timed out, then the bus (vide Rule 4)
transitions to an error state. If when the counter expires, the original writer and
reader are still present in the interaction, the handshake is completed and the writer
and reader are released (Rule 5). Else a transition to an error state is made (Rule
6).

4.2 Timed Buffered Communication

In a timed buffered communication channel, writers and readers communicate over
a FIFO buffer whose capacity is assumed to be N data elements. There exists a
pre-determined propagation delay (δ time units) between the tail and the head of
the FIFO buffer. In other words, a data element written to the head of the FIFO
buffer is read δ time units later at the tail end.

Let us now define the set of bus states and auxiliary get and put functions that
enable us to add/remove data elements from the internal data structure of the bus.

• BN,δ = 2{0,...,δ}×V ie BN,δ is the set of subsets of tuples, the first element being
a time in flight (TIF) counter (with the initial TIF of any element in the FIFO
being equal to δ) and the second element being the actual data value that is
stored as a cell in a FIFO where the cardinality of the set is N .
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•

put(〈t, v〉, b) =


b
⋃
{〈t, v〉} if ¬∃v′.〈t, v′〉 ∈

b

b− {〈t, v′〉} if 〈t, v′〉 ∈ b

undefined if | b |= N

The intuition behind this is that when an element is written to the FIFO, the
put logic checks to see if there is another data value with the same TIF already
present in the FIFO. If there is not, then the data is added to the FIFO. If there
exists a data value with the same TIF (i.e. the same time-stamp), then a data
collision has occurred or in other words, simultaneous writes to the same location
at the same time has taken place. In this case, we allow none of the colliding
values to enter the FIFO.

• We define a tick function that decrements the TIF associated with each element
in the FIFO.
tick(b, n) = {〈t− n, l〉 | 〈t, l〉 ∈ b}

Note that the definition of tick allows the TIF to become negative. A data
value with an associated negative TIF can be interpreted as a value that has
propagated from the head to the tail of the FIFO but has still not been read (and
thus removed) from the FIFO. If more than one data value with a negative TIF
exists, the one with the minimum TIF is the one that is read (since it has been
in the FIFO for the longest time).

• Before we define, the get function for a FIFO, we need to establish some auxiliary
definitions.

lnp is a function that takes a set of tuples of the form 〈t, v〉 and returns a tuple
with the lowest non-positive TIF .

lnp(T ) =

 〈t, v〉 if 〈t, v〉 ∈ T , t ≤ 0 and ∀〈t′, v′〉 ∈ T.t′ ≥ t

undefined otherwise

Now we define the get function.

get(b) =

 〈v, b− {lnp(b)}〉 if lnp(b) = 〈t, v〉

undefined otherwise

Rule 1 in Table 2 state that as long as the buffer is not full, writers can keep
on writing to the bus. All such writes are instantaneous, i.e. time progresses only
after all enabled writes are completed. When a data value enters the bus, there
is a time-stamp (or more precisely a time in flight) that is attached to it—in this
example since propagation delay is assumed to be δ, we attach the value δ to every
data value once it is written to the bus. Every time a clock ticks, the “time in
flight” is decremented by 1 (Rule 2). Readers who want to read are allowed to do
so only if the data element at the read end of the buffer has its “time in flight” less
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Table 2
FIFO bus 〈I, BN,δ, ∅, T 〉, with capacity N and δ delay

I = 〈W, R〉
BN,δ = 2{0,δ}×V

T is defined as follows.

(i) b
W RV

WV R
−→b′ iff ∃〈w, v〉 ∈ WV. W = {w} ∧ b′ = put(〈δ, v〉, b)

or ∃r ∈ R, v ∈ V. get(b) = 〈v, b′〉 ∧RV = {〈r, v〉}

(ii) b′
1

−→b′′ iff b′′ = tick(b′, 1)

than or equal to 0 which means that it has been in the buffer for at least δ time
units.

5 Related Work

The SAE Architecture Analysis & Design Language (AADL) [6] (that grew out of
MetaH [8]) is a textual and graphical language supports model-based engineering
of embedded real-time systems. However AADL, not having an explicit execution
semantics for inter-component communication lacks the power to package commu-
nication behavior into architectural elements which can then be used as atomic
blocks for system construction. All AADL communication takes place implicitly
through queued or nonqueued data at ports whereas in TAID, components perform
communication via an explicit entity called a bus that encapsulates the specific com-
munication semantics which is not limited to queued/non-queued communication
only.

WRIGHT [14] and TRACTA [4] are ADLs that, like TAID, have a formal ex-
ecutable semantics “under the hood”. However, they do not provide notions for
modeling time and also do not provide for the ability to parameterize communica-
tion ie these languages have a single communication primitive that is built into it
and that cannot be extended by any means. Ptolemy [10] is a modeling environment
that provides support for heterogenous specifications by allowing for encodings of
different models of computation. TAID distinguishes itself from Ptolemy by its use
of buses as a means for encapsulating different models of computation (synchronous,
asynchronous) in a concise manner.

There are several tool implementations eg Artisan Studio [7] that realize UML-
RT [3] and SysML [9] constructs but this approach suffers from UML/SysML not
having a standardized execution semantics.

For a more full-fledged discussion of different ADLs with respect to AID,interested
readers are requested to refer to [15]

6 Conclusions and Future Work

This paper describes a executable, timed specification language, TAID, for de-
scribing real-time, distributed systems. TAID is intended for use in the design
process for high-integrity embedded systems. Our future work consists of using

13
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Simulink/Stateflow as modeling infrastructure for representing and simulating dis-
tributed real-time system designs comprising TAIDs whose components are Simulink
/ Stateflow models. The effort also involves the development of Simulink blocksets
as specifications for standard communication platforms. A project on this topic is
underway with a major international automotive company.
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Instantaneous Transitions in Esterel
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Abstract

Esterel is an imperative synchronous programming language for the specification of deterministic concurrent
reactive systems. While providing the usual control-flow constructs—sequences, loops, conditionals, and
exceptions—its lack of a goto instruction makes the programming of arbitrary finite state machines awkward
and hinders the design of source-to-source program transformations. We previously introduced to Esterel
a non-instantaneous gotopause instruction, which prevents the synchronous execution of code before and
code after the transition. Here, we tackle instantaneous transitions. Concurrency demands we assign scopes
and priorities to gotos, so we extend Esterel’s exception handling mechanism to allow exception handlers in
arbitrary locations. We advocate for and formalize the resulting language. We observe that instantaneous
gotos complement but do not replace non-instantaneous gotopauses.

Keywords: concurrency, exceptions, SyncCharts, compilation.

1 Introduction

Esterel [3,4,5,6] is a concurrent programming language. Its syntax is imperative

and fit for the design of control-oriented reactive systems [10]. Its semantics are

synchronous: active threads run in lockstep and communicate via instantly broad-

cast signals. Like most modern imperative languages, Esterel promotes structured

programming. Common programming practice strongly discourages the use of gotos

when they are available [8], but Esterel provides none at all.

The lack of goto is not without reason. First, gotos and concurrency do not

mix well and Esterel code is hardly ever sequential. Second, loops—simple forms

of jumps—already cause substantial trouble. To make a long story short, a com-

plex loop unfolding algorithm—reincarnation [3,19]—is a mandatory step in the

compilation of Esterel.

1 Email: olivier.tardieu@sophia.inria.fr
2 Email: sedwards@cs.columbia.edu
3 Tardieu was at Columbia when this work was performed.
4 Edwards and his group are supported by the NSF, Intel, Altera, the SRC, and NYSTAR.
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Nevertheless, the lack of a goto instruction is a drawback. Many standards

explicitly prescribe (unstructured) state machines. For example, the link layer

specification of the Serial ATA standard [16] specifies a 31-state machine by list-

ing transitions in a table. To describe such machines, many formalisms, such as

SyncCharts [1,2], provide graphical modeling of reactive systems using hierarchical

and parallel compositions of finite state machines. While its synchronous seman-

tics match those of Esterel, the translation from SyncCharts to Esterel is awkward

and obfuscates the programmer’s intent. Transitions are encoded with signaling.

Arbitrary state machines can be encoded using one concurrent process per state.

But maintaining structural information about exclusive states in the generated code

is not easy. In contrast, a goto allows the direct encoding of transitions and the

preservation of this information.

Internally, all Esterel compilers use ad hoc intermediate languages (e.g., IC [5]

and GRC [14]) that expand Esterel control-flow constructs into jump instructions.

This suggests adding gotos to Esterel should not only be feasible but also have a

minor impact on code generation. While for code generation, it would be reasonable

to translate formalisms such as SyncCharts directly to such internal formats, this

would not help users reason about specifications.

Previously, we extended Esterel with a gotopause instruction [17]. By design, it

ensures that one instant elapses between the execution of the jump instruction and

the execution of the code following the target of the jump. Thanks to the definition

of well-formed programs, we were able to specify non-instantaneous jumps that are

consistent with the principles of deterministic synchronous concurrency. The delay

implies their semantics do not involve unfolding, making compilation trivial.

Of course, non-instantaneous jumps are no help for the programming of finite

state machines with instantaneous transitions. In this paper, we introduce instan-

taneous jumps, which we obtain by combining features of loops, exceptions, and

non-instantaneous jumps. First, like exceptions, instantaneous jumps have scopes

and are prioritized accordingly. In a series of concurrent jumps, all but the highest-

priority jump are ignored. Second, as with loops, the semantics of instantaneous

jumps rely on unfolding. Finally, the machinery for transferring control to a distant

location in the source code already exists in the formal semantics of Esterel thanks

to gotopause.

We introduce instantaneous jumps by extending the exception handling mecha-

nism of Esterel. Raising an exception normally jumps to the end of the exception

scope. Our extension makes it possible to place the exception handler, i.e., the

target of the jump, at any point within the scope of the exception. This employs

an explicit catch instruction, which behaves like a label.

While this “exception handler within a trap” construct may appear strange,

simply taking a more traditional goto-and-label approach would come with too

many caveats to be any simpler. This paper aims at understanding the interactions

between concurrency and gotos to provide a formal framework that can be used to

add a variety of jump constructs. What if a goto attempts to exit the scope of an

exception? What if concurrent gotos target exclusive program states? Our design

minimizes the change to the language and its semantics. We only suggest a general,

low-level syntax. Additional syntactic sugar is probably necessary.

2
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statements locations compatible locations

p, q ::= nothing ∅ ∅
ℓ:pause {ℓ} ∅
gotopause ℓ ∅ ∅
p ; q Lp ∪ Lq Cp ∪ Cq

p || q Lp ∪ Lq Cp ∪ Cq ∪ (Lp×Lq) ∪ (Lq×Lp)

[p] Lp Cp

loop p end Lp Cp

signal S in p end Lp Cp

emit S ∅ ∅
present S then p else q end Lp ∪ Lq Cp ∪ Cq

suspend p when S Lp Cp

trap T in p end Lp Cp

exit T ∅ ∅

Fig. 1. The syntax of Esterel. Compatible locations.

In particular, we show instantaneous gotos do not generalize non-instantaneous

gotos but complement them: gotopause instructions are not simply instantaneous

jumps plus delays.

We describe the syntax and semantics of the Esterel language and the gotopause

instruction in Section 2. We introduce and formalize the catch instruction in Sec-

tion 3. Through an example, we illustrate the encoding of state machines with

instantaneous transitions. We also discuss loop elimination as an instance of a

source-to-source program transformation relying on the new construct. We discuss

related work in Section 4 and conclude in Section 5.

2 Esterel and gotopause

Without loss of generality, we focus on the pure Esterel language augmented with

a gotopause instruction. The full language is obtained from its pure fragment by

adding data-centric constructs irrelevant to our discussion.

2.1 Syntax and Intuitive Semantics

We describe the grammar of our kernel language in Fig. 1, Col. 1. The non-terminals

p and q denote statements, S signal identifiers, T exception identifiers, and ℓ integer

labels. The infix “;” operator binds tighter than “||.”

In Cols. 2 and 3, we recursively define the locations Lp and the compatible loca-

tions Cp of the statement p. The locations of p are the labels of the pause instructions

in p. They must be pairwise distinct. Formally, in statements when both p and q

occur, the sets Lp and Lq must be disjoint. For example, 1:pause ; 1:pause is

illegal. We discuss compatible locations later.

The execution of an Esterel program, i.e., a statement, consists of a possibly

infinite sequence of atomic execution steps called reactions. Each reaction is said

to last for one instant. Pause instructions represent reaction boundaries, i.e., the

progress of time.

3
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• nothing does nothing; terminates instantly, that is to say a statement immedi-

ately after this instruction is run instantly.

• ℓ:pause suspends the execution for one instant. The statement immediately

after this instruction, if any, is run in the next instant of execution.

• gotopause ℓ suspends the execution for one instant. The statement immediately

after the pause instruction with label ℓ is run in the next instant of execution.

• p ; q executes p instantly followed by q if/when p terminates; instantly termi-

nates if/when q terminates. If the execution of p raises an exception then it is

instantly propagated upward and q is not run. If the execution of q raises an

exception then it is instantly propagated upward.

• p || q executes p in parallel with q synchronously: one reaction of p || q consists

of one reaction of p and one reaction of q until p or q terminates. If p terminates

first then q continues running and p || q instantly terminates when q does (and

vice versa). If p and q raise exceptions in the same instant, the exception with

higher priority is instantly propagated upward. If p only raises an exception then

q is allowed to complete its current reaction before this exception is instantly

propagated upward. Even if incomplete, the execution of q is not resumed in the

next instant (and vice versa).

• [p] runs p. This allows sequences of parallel statements, e.g., [p || q];[r || s].

• loop p end repeats p forever unless p raises an exception, which is instantly prop-

agated upward. Two iterations of the loop may not complete in the same instant.

E.g., loop nothing end is illegal. This constraint ensures that atomic execution

steps (reactions) can be computed with statically bounded resources [18].

• signal S in p end declares the local signal S in p and executes p. Signals

are lexically scoped. Signal declarations are not mandatory. Undeclared signals

occurring in emit and present constructs are considered global.

• emit S emits signal S and terminates instantly. Global signals may be emitted

by the environment in addition to the program itself.

• present S then p else q end executes p if S is emitted in this instant (by the

program or the environment if global), and executes q otherwise. If the execution

of the chosen branch requires more than one instant, it is continued in the next

instants independently from the status of S in these instants.

• suspend p when S instantly starts executing p and ignores the status of S.

However, if the execution of p does not complete instantly, it is only allowed to

run in later instants in which S is not emitted (otherwise, it is suspended).

• trap T in p end declares exception T in p and executes p. Exceptions are

lexically scoped. If p terminates or raises exception T then trap T in p end

terminates instantly. If p raises a different exception it is propagated upward. In

case of nested exception declarations, the outermost declaration has the highest

priority.

• exit T raises exception T . We define depth(exit T ) as the number of trap

constructs enclosing the exit and enclosed in the declaration of T .

4
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For example,

trap T

emit A ; 1:pause ; emit B ; exit T ; emit C

||

emit D ; 2:pause ; emit E ; emit F ; 3:pause ; emit G

end ; emit H

emits signals A and D in its first reaction, then B, E, F, and H in its second and final

reaction. Neither C nor G is emitted. Here, the depth of exit T is 0.

Locations represent possible suspension points for the execution between two

reactions. In previous example, after the first reaction, the execution is suspended

at locations 1 and 2.

In Fig. 1, Col. 3, we define compatible locations. Two locations ℓ and ℓ′ are

compatible in p, i.e., (ℓ, ℓ′) ∈ Cp, iff these locations belong to concurrent branches

of p. By construction, in the usual Esterel language (no gotopause), only compatible

locations may be reached simultaneously. If L0 is a set of pairwise compatible loca-

tions of the program p, we write p/L0 for the program p suspended at locations L0.

We say p/L0 is a state of the program p.

In Esterel with gotopause, several gotopause instructions may be executed con-

currently. Their target locations must exist and be pairwise compatible [19]:

• [ gotopause 1 || gotopause 2 ] ; [ 1:pause || 2:pause ] is fine.

• gotopause 1 ; 2:pause is illegal because the gotopause instruction lacks a

target pause instruction.

• [ gotopause 1 || gotopause 2 ] ; 1:pause ; 2:pause is illegal because

the target pause instructions of the jump are not compatible.

2.2 Formal Semantics

We denote by p\X either the program p itself—the program p in its initial state—

or the program p in some state p/L0. Reactions of a program p are expressed via

labeled transitions of the form:

p\X
O, k
−−→

I
L

• p\X is the state from which the reaction starts;

• I is the set of signals emitted by the environment; 5

• O is the set of signals emitted by the program;

• k is the completion code of the reaction:

· k = 0 if the execution terminates instantly,

· k = 1 if part of the execution is delayed due to pause(s) or gotopause(s),

· k ≥ 2 if an exception is reported; and

• p/L is state reached by the reaction. By construction, L 6= ∅ iff k = 1.

5 This differs from the usual presentations of the language semantics, where present signals are considered
instead (E = I ∪O). We choose such a presentation here because we find it more intuitive. This choice has
no impact on the language extension we propose.

5
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In Fig. 2, we specify the semantics of Esterel with gotopause as a set of facts

and deduction rules in a structural operational style [13]. All but the two rules

marked (∗) will be preserved unchanged in the specification of Esterel plus gotopause

plus catch in Section 3.4.

Consider the rule

p\X
O, 0
−−−→
I∪O′

∅ q
O′, k
−−−→
I∪O

L

p ; q\X
O∪O′, k
−−−−−→

I
L

.

It specifies that p ; q when started (resp. restarted in state p ; q/L0) may react to

inputs I with outputs O ∪ O′, completion code k, and reaches the state p ; q/L if

• p when started (resp. restarted in state p/L0) reacts to inputs I∪O′ by terminating

instantly with outputs O; and

• q when started reacts to inputs I ∪ O with outputs O′, completion code k, and

reaches the state q/L.

Because of the synchrony hypothesis, not only are the outputs O of p inputs of q,

but reciprocally the outputs O′ of q are inputs of p.

2.3 Instantaneous Loops and Reincarnation

Using the extended exception handling mechanism we propose, one can implement

loops without the loop construct. We focus here on understanding the properties

of loops, which our language extension must preserve.

The formal semantics of the loop construct consists of two rules so that

• loop p end
O, k
−−→

I
L iff p

O, k
−−→

I
L ∧ k 6= 0 and

• loop p/L0 end
O, k
−−→

I
L iff







either p/L0
O, k
−−→

I
L ∧ k 6= 0

or p/L0
A, 0
−−−→
I∪B

∅ ∧ p
B, k
−−→
I∪A

L ∧ k 6=0 ∧ O=A∪B
.

When loop p end starts executing, it starts executing its body p, which may ei-

ther suspend its execution (because of pause or gotopause instructions) or raise an

exception; but p cannot terminate instantly. When the loop is restarted from the

state L0, it restarts its body. Now, if p terminates instantly, a new iteration—a

new execution of p—is instantly started. Again, this iteration cannot terminate

instantly.

First, observe that a program such as loop nothing end admits no possible exe-

cution: it deadlocks. In the sequel, we introduce similar safeguards to the semantics

of exceptions that choose deadlocks over instantly diverging behaviors.

Second, loop and signal constructs do not commute. In Fig. 3, program (a)

emits signal A from the second instant onwards. In contrast, program (b) never

emits A because, in each reaction, the test applies to a fresh signal S distinct from

the emitted signal S. We say signal S is reincarnated because of the loop. In the

sequel, we implement comparable interaction rules for signal and trap scopes so

loops built from trap-exit-catch constructs behave in the same way.

6
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nothing
∅, 0
−−→

I
∅ ℓ:pause

∅, 1
−−→

I
{ℓ}

emit S
{S}, 0
−−−→

I
∅ gotopause ℓ

∅, 1
−−→

I
{ℓ}

exit T
∅, depth(exit T )+2
−−−−−−−−−−−−→

I
∅

ℓ ∈ L0

ℓ:pause/L0
∅, 0
−−→

I
∅

p\X
O, 0
−−−→
I∪O′

∅ q
O′, k
−−−→
I∪O

L

p ; q\X
O∪O′, k
−−−−−→

I
L

p\X
O, k

−−−−→
I\{S}

L

signal S in p end\X
O\{S}, k
−−−−−→

I
L

p\X
O, k
−−→

I
L k 6= 0

p ; q\X
O, k
−−→

I
L

S ∈ I ∪ O p
O, k
−−→

I
L

present S then p else q end
O, k
−−→

I
L

q/L0
O, k
−−→

I
L

p ; q/L0
O, k
−−→

I
L

S /∈ I ∪ O q
O, k
−−→

I
L

present S then p else q end
O, k
−−→

I
L

p
O, k
−−→

I
L

suspend p when S
O, k
−−→

I
L

p/L0
O, k
−−→

I
L

present S then p else q end/L0
O, k
−−→

I
L

S /∈ I ∪ O p/L0
O, k
−−→

I
L

suspend p when S/L0
O, k
−−→

I
L

q/L0
O, k
−−→

I
L

present S then p else q end/L0
O, k
−−→

I
L

p\X
O, k
−−→

I
L k 6= 0

loop p end\X
O, k
−−→

I
L

p/L0
O, 0
−−−→
I∪O′

∅ p
O′, k
−−−→
I∪O

L k 6= 0

loop p end/L0
O∪O′, k
−−−−−→

I
L

p/L0
O, k
−−→

I
L L0 ∩ Lq = ∅

p || q/L0
O, k
−−→

I
L

p
O, k
−−−→
I∪O′

L q
O′, k′

−−−→
I∪O

L′

p || q
O∪O′, k⊔k′

−−−−−−−→
I

{

L ∪ L′ if k ⊔ k′ = 1

∅ if k ⊔ k′ 6= 1

q/L0
O, k
−−→

I
L L0 ∩ Lp = ∅

p || q/L0
O, k
−−→

I
L

p/L0 ∩ Lp
O, k
−−−→
I∪O′

L q/L0 ∩ Lq
O′, k′

−−−→
I∪O

L′

p || q/L0
O∪O′, k⊔k′

−−−−−−−→
I

{

L ∪ L′ if k ⊔ k′ = 1

∅ if k ⊔ k′ 6= 1

∀k, k′ : k ⊔ k′ = max(k, k′)










↓0 = ↓2 = 0

↓1 = 1

↓n = n − 1 ∀n > 2

S ∈ I L0 6= ∅

suspend p when S/L0
∅, 1
−−→

I
L0

(∗)

p\X
O, k
−−→

I
L

trap T in p end\X
O, ↓k
−−−→

I
L

(∗)

Fig. 2. The semantics of Esterel with gotopause.

7
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signal S in

loop

present S then emit A end;

1:pause;

emit S;

end

end

loop

signal S in

present S then emit A end;

1:pause;

emit S;

end

end

(a) (b)

Fig. 3. Loops and reincarnation.

3 Introducing catch in Esterel

We now extend Esterel with a new catch instruction. The syntax becomes

p, q ::= nothing | ℓ:pause | ... | exit T | catch T

with the constraint that there can be at most one catch T statement in the scope

of each trap T in ... end construct under the usual scoping rules. For instance,

if there are two nested declarations for the same exception identifier T , then there

can be at most one catch T statement inside the inner declaration plus at most

one catch T statement between the declarations.

If there is no such catch instruction, we always implicitly add one at the end of

the trap body:

trap T in p end → trap T in p ; catch T end

Hence, in the sequel, we assume there is exactly one catch T statement for each

declaration of T .

The catch instruction grabs control instantly when the corresponding exception

occurs. Intuitively, exit is like a goto with catch as its label.

3.1 Example

In Fig. 4, we demonstrate the encoding of a state machine for an elevator door using

catch. It has four states: OPENING, OPENED, CLOSING, and CLOSED the ini-

tial state of the machine. The input signals Open and Close convey user commands.

The input signals DoorOpened and DoorClosed indicate the door’s position. The

output signals MotorOpen and MotorClose control the motor. Control signals must

be sustained over a period of time for the door to fully open or fully close.

In this design, the DoorOpened and DoorClosed sensor signals must be taken

into account instantly—as specified with #—so that the motor is shut down with-

out delay. Moreover, we want instantaneous transitions to take priority over non-

instantaneous transitions.

This design is implemented as follows. One exception is declared for each state.

Exception priorities are irrelevant here because we never raise two exceptions si-

multaneously. State entry points are specified with catch constructs. Instantaneous

transitions are encoded by exit constructs. Non-instantaneous transitions are de-

layed by pause instructions. Alternatively, gotopause instructions could be used for

non-instantaneous transitions here.
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CLOSED

OPENING
MotorOpen

OPENED

CLOSING
MotorClose

#DoorOpened Close

#DoorClosedOpen

Close

Open

trap OPENING in trap OPENED in
trap CLOSING in trap CLOSED in

catch CLOSED;
present Open then pause; exit OPENING end;
pause; exit CLOSED;

catch OPENING;
present DoorOpened then exit OPENED end;
emit MotorOpen;
present Close then pause; exit CLOSING end;
pause; exit OPENING;

catch OPENED;
present Close then pause; exit CLOSING end;
pause; exit OPENED;

catch CLOSING;
present DoorClosed then exit CLOSED end;
emit MotorClose;
present Open then pause; exit OPENING end;
pause; exit CLOSING;

end end end end

(a) (b)

Fig. 4. Encoding an arbitrary state machine with trap-exit-catch. (a) A state machine for an elevator
door. DoorOpened and DoorClosed are sensors that indicate the door’s position; Open and Close initiate
or override commands; and MotorOpen and MotorClose control the motor. (b) Coding this using the catch
instruction.

3.2 Catch in Sequential Code

The exit-catch construct mimics the goto-label construct of C. For example,

trap T in exit T ; emit A ; catch T ; emit B end

only emits B. In general, the semantics of exit is that the body of its enclosing trap

is terminated and restarted at the catch. In particular, the catch instruction may

occur to the left of the corresponding exit(s). For instance,

trap T in emit A ; catch T ; emit B ; 1:pause ; exit T end

behaves just like

emit A ; loop emit B ; 1:pause end

Incidentally, this means that catch T, when run immediately after emit A, does

nothing and terminates instantly.

In general, the expansion of loops

loop p end → trap T in exit T ; catch T ; p ; exit T end

is semantics-preserving provided T is a fresh exception identifier. In particular, p

cannot terminate instantly in this context. We prove the correctness of the expan-

sion and motivate the first exit in Section 3.5.

Since the semantics of exit is that the body of its enclosing trap is terminated

and restarted at the catch, the signals local to the trap body are reincarnated as

the control jumps from exit to catch. In Fig. 5, program (a), signal A is emitted

because the signal statement is not restarted. In contrast, in program (b), signal S is

reincarnated because the exit statement causes the body of the trap, which includes

the signal scope, to be terminated and restarted. Thus, a second, fresh incarnation

of signal S appears and signal A is not emitted here.

9
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signal S in

trap T in

emit S;

exit T;

catch T;

present S then

emit A % runs

end

end

end

trap T in

signal S in

emit S;

exit T;

catch T;

present S then

emit A % does not run

end

end

end

(a) (b)

Fig. 5. The effect of scopes.

3.3 Catch and Concurrency

Several exits may execute concurrently, as illustrated in Fig. 6. When program (a)

runs, exit T1 and exit T2 both execute. However, because exception T1 takes

precedence over T2, only catch T1 is relevant: control resumes from there, and A is

emitted instantly. Signal B is not emitted because control is only transferred to the

first parallel branch; the second parallel branch is treated as having terminated.

In contrast, in program (b), the two gotopause statements are equally relevant,

jumping to both branches of the second parallel, meaning that both A and B are

emitted in the second instant.

Furthermore, we observe that program (c) is legal whereas program (d) is not.

In program (c), two exit statements execute instantly, but again only the outer-

most exception affects control, so only B is emitted. However, concurrent gotopause

statements that send control into a sequence—incompatible locations—are illegal.

Priorities eliminate this potential problem with exit statements.

Since gotopause(s) and exit(s) implement dual approaches to concurrency, go-

topause instructions do not reduce to trap-exit-catch constructs plus delays. On the

one hand, trap-exit-catch constructs cannot replace gotopause instructions when sev-

eral targets must be reached concurrently and the scopes of the concurrent jumps

intersect. 6 On the other hand, gotopause instructions cannot encode the instan-

taneous transitions of SyncCharts specifications. As a result, we believe it makes

sense to retain both constructs.

3.4 Formal Semantics

Previously, we defined the states of a program p as pairs p/L0 where L0 is a set of

compatible locations of p and also the initial state of p, which we identified with

p. To express the semantics of the catch instruction, we now introduce exception

states: for each statement in the scope of a trap T in ... end construct and contain-

ing a catch T statement, we associate the exception state p/#T . In other words,

6 The scope of a non-instantaneous jump is the least program piece that contains both the source gotopause
and target pause instructions of the jump. The scopes of concurrently executed jumps are typically pairwise
disjoint when using gotopause to encode SyncCharts non-instantaneous transitions thanks to SyncCharts re-
strictions on inter-level transitions. In contrast, these scopes are typically not disjoint when using gotopause
to cure schizophrenia [19].
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trap T1 in

trap T2 in

[

exit T1

||

exit T2

];

[

catch T1;

emit A % runs

||

catch T2;

emit B % doesn’t

]

end

end

[

gotopause 1

||

gotopause 2

];

[

1:pause;

emit A % runs

||

2:pause;

emit B % runs

]

% OK

trap T1 in

trap T2 in

[

exit T1

||

exit T2

];

catch T2;

emit A

catch T1;

emit B

end

end

% Erroneous

[

gotopause 1

||

gotopause 2

];

2:pause;

emit A;

1:pause;

emit B

(a) (b) (c) (d)

Fig. 6. The difference between gotopause and trap-exit-catch.

we extend the locations of p to contain not only the locations of its pause instruc-

tions but also the locations of its catch instructions. Moreover, we consider these

new locations to be first pairwise incompatible and second incompatible with pause

locations. Now, the set L0 in p/L0 is either a potentially empty set of compatible

pause labels of p or the single location #T of some catch T statement in p.

The formal semantics of Fig. 2 consists of twenty-four rules. To extend Esterel

with the catch instruction, we preserve the first twenty-two rules, discard the two

rules marked (∗), and add the six rules in Fig. 7 for catch, trap, and suspend :

• catch T does nothing and terminates instantly when started or restarted from

location #T .

• trap T in p end behaves like p if exception T is never raised. If T is raised then

the trap construct instantly restarts p at location #T . This execution cannot

instantly raise T again (k 6= 2). Both rules for the trap construct carefully avoid

capturing another exception with same identifier T by using the test X 6= #T ,

which is shorthand for “if p\X is of the form p/L0 then L0 6= #T .”

• suspend p when S when requested to restart from some location #T , does so

ignoring the status of signal S. Because the semantics of the trap construct

consists in exiting and restarting its body if the exception occurs, inner suspend

statements are considered to be in their first instant of execution when restarted.

Thus, as usual, we want to ignore the status of S in the first instant.

By construction, the final state of any reaction cannot be an exception state: ex-

ception states are both generated and evaluated within the instant.

The trap T in p end statement, by preventing exception T from occurring twice

instantly in p, effectively forbids instantaneous loops. Because the trap instruction

starts a fresh incarnation of p when the exception occurs, reincarnation of signals

local to p takes place as expected.
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catch T
∅, 0
−−→

I
∅ catch T/#T

∅, 0
−−→

I
∅

X 6= #T p\X
O, k
−−→

I
L k 6= 2

trap T in p end\X
O, ↓k
−−−→

I
L

S ∈ I L0 6= ∅ L0 6= #T

suspend p when S/L0
∅, 1
−−→

I
L0

X 6= #T p\X
O, 2
−−−→
I∪O′

∅ p/#T
O′, k
−−−→
I∪O

L k 6= 2

trap T in p end\X
O∪O′, ↓k
−−−−−→

I
L

S ∈ I p/#T
O, k
−−→

I
L

suspend p when S/#T
O, k
−−→

I
L

Fig. 7. The semantics of catch.

3.5 Correctness Results

We first check the correctness of our language extension by proving that the ex-

tended semantics matches the initial semantics for a program without catch in-

structions. We then prove the loop expansion of Section 3.2.

In this section, we denote by ◦→ the reactions defined by the initial semantics

and by → the reactions defined by the extended semantics.

Since we decided earlier to deal with absent catch instructions by inserting them

at the end of their respective trap blocks, we consider the statements:

• initial language: p and P = trap T in p end, and

• extended language: q and Q = trap T in q ; catch T end.

We prove that P and Q are equivalent if p and q are.

Lemma 3.1 If ∀X, ∀I,∀O, ∀k : p\X ◦
O, k
−−→

I
L ⇔ q\X

O, k
−−→

I
L then:

trap T in p end\X ◦
O, k
−−→

I
L ⇔ trap T in q ; catch T end\X

O, k
−−→

I
L.

Proof. ∀T ′,∀X 6= #T ′,∀I,∀O, ∀k: let κ̂ be k if k ≤ 1 or k + 1 otherwise.

First, trap T in q ; catch T end\#T ′ deadlocks for all T ′ since q does.

Second, trap T in q ; catch T end\X
O, k
−−→

I
L

iff







either q ; catch T\X
O, κ̂
−−→

I
L

or O = A ∪ B ∧ q ; catch T\X
A, 2
−−−→
I∪B

∅ ∧ q ; catch T/#T
B, κ̂
−−→
I∪A

L

iff q\X
O, κ̂
−−→

I
L or q\X

O, 2
−−→

I
∅ ∧ κ̂ = 0

iff p\X ◦
O, κ̂
−−→

I
L or p\X ◦

O, 2
−−→

I
∅ ∧ κ̂ = 0

iff trap T in p end\X ◦
O, k
−−→

I
L. 2

Theorem 3.2 If p contains no catch instruction then the initial and extended se-

mantics define the same reactions for all states of p.

Proof. By induction on the number of nested exception declarations in p. 2
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We now return to the loop expansion of Section 3.2. Comparing the semantics

of the loop and trap constructs, we observe that the loop body is never permitted to

terminate instantly, neither in its first nor in subsequent iterations. The trap body

however may instantly raise the exception. The rules only forbid the exception to

occur again when restarting the body from the catch location. Therefore, to ensure

a correct expansion of loops into trap-exit-catch constructs in Section 3.2, we insert

a second exit at the beginning of the trap body in addition to the obvious one at

the end of the body.

For simplicity, 7 we establish

Theorem 3.3 If T is a fresh identifier then these statements are equivalent:

• trap T in loop p end end,

• trap T in exit T ; catch T ; p ; exit T end.

Proof. ∀L0 6= #T, ∀I,∀O, ∀k: let κ̂ be k if k ≤ 1 or k + 1 otherwise.

First, trap T in exit T ; catch T ; p ; exit T end/L0
O, k
−−→

I
L

iff























either exit T ; catch T ; p ; exit T/L0
O, κ̂
−−→

I
L

or O = A ∪ B ∧







exit T ; catch T ; p ; exit T/L0
A, 2
−−−→
I∪B

∅

exit T ; catch T ; p ; exit T/#T
B, κ̂
−−→
I∪A

L

iff







either p ; exit T/L0
O, κ̂
−−→

I
L

or O = A ∪ B ∧ p ; exit T/L0
A, 2
−−−→
I∪B

∅ ∧ p ; exit T
B, κ̂
−−→
I∪A

L

iff







either p/L0
O, κ̂
−−→

I
L ∧ κ̂ 6= 0

or O = A ∪ B ∧ p/L0
A, 0
−−−→
I∪B

L ∧ p
B, κ̂
−−→
I∪A

L ∧ κ̂ 6= 0

iff loop p end/L0
O, κ̂
−−→

I
L, thus iff trap T in loop p end end/L0

O, k
−−→

I
L.

Second, trap T in exit T ; catch T ; p ; exit T end
O, k
−−→

I
L

iff























either exit T ; catch T ; p ; exit T
O, κ̂
−−→

I
L (impossible)

or O = A ∪ B ∧







exit T ; catch T ; p ; exit T
A, 2
−−−→
I∪B

∅

exit T ; catch T ; p ; exit T/#T
B, κ̂
−−→
I∪A

L

iff p ; exit T
O, κ̂
−−→

I
L, thus iff p

O, κ̂
−−→

I
L ∧ κ̂ 6= 0

iff loop p end
O, κ̂
−−→

I
L, thus iff trap T in loop p end end

O, k
−−→

I
L.

Finally, both statements deadlock if required to start from location #T . 2

7 The enclosing trap construct in the first statement ensures exception depths are identical in the two
statements. Hence, there is no need to micromanage depths in the proof.
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4 Related Work

The origin of this paper was the usual connection between transitions in finite state

machine and gotos in imperative languages. A transition from state A to state B

is nothing but a jump from block A to the beginning of block B, where blocks A

and B implement the behaviors in states A and B.

While graphical design formalisms à la StateCharts [9,20] permit arbitrary, un-

structured state machines, Esterel makes it awkward because of its lack of goto.

The goto-like constructs we formalize here follow directly from SyncCharts [1,2],

a StateCharts-like graphical modeling language with well-defined synchronous se-

mantics à la Esterel. But our constructs are more expressive than the collection

of transitions available in SyncCharts. In particular, the trap-catch-exit construct

makes it possible to exit and reenter several layers of nested macrostates at once.

While SyncCharts drawings abide by rigid nesting rules and drastically restrict

inter-level transitions, we allow them whenever possible.

Coding arbitrary state machines is even harder in pure dataflow synchronous lan-

guages because the programmer is responsible for specifying all sequential behavior.

To address this, researchers have proposed language extensions such as mode au-

tomata [12] in Argos [11] and more recently in Lucid Synchrone [7]. Faithful to the

languages they extend, these proposals restrict transitions to avoid complex causal

dependencies and schizophrenia. We do not. In particular, we allow arbitrarily

(finitely) many transitions to be taken in one instant.

While we want to ease the encoding of graphical synchronous specifications

into textual Esterel programs, others have attempted the converse: automatically

synthesizing graphical specifications from textual Esterel programs [15]. We hope

to eventually combine the two to provide a user-friendly way of switching between

graphical and textual representations of a specification.

5 Conclusions

We extend the trap-exit construct of Esterel with a new catch instruction that allows

exception handlers to appear anywhere in the body of the trap. One can think of

the exit instruction as a goto to the location of the corresponding catch instruction.

Simultaneous exits result in a single jump to the highest-priority handler. Thus,

our trap-exit-catch construct supplements but does not supplant the existing go-

topause instruction for concurrent non-instantaneous jumps. We believe both must

coexist in the language. Only gotopause can decouple the structure of program

states from that of the source code while the catch instruction makes it possible to

specify finite state machines with instantaneous transitions. In particular, it greatly

simplifies the translation of SyncCharts into Esterel.

Although we did not address causality, especially constructive causality [3], we

think there is no issue. The semantics of the new construct is obtained by com-

bining existing pieces: loops for reincarnation, exceptions for priorities, and non-

instantaneous jumps for locations. Synchronous digital circuit synthesis for the

extended language, thus constructive semantics, should be similarly derived. For

the same reason, implementing the new construct should be straightforward.
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Specifying and executing reactive scenarios
with Lutin

Pascal Raymond, Yvan Roux, Erwan Jahier 1

VERIMAG (CNRS, UJF, INPG)
Grenoble, France 2

Abstract

This paper presents the language Lutin and its operational semantics. This language specifically targets the
domain of reactive systems, where an execution is a (virtually) infinite sequence of input/output reactions.
More precisely, it is dedicated to the description and the execution of constrained random scenarios. Its
first use is for test sequence specification and generation. It can also be useful for early execution, where
Lutin programs can be used to simulate modules that are not yet fully developed.
The programming style mixes relational and imperative features. Basic statements are input/output re-
lations, expressing constraints on a single reaction. Those constraints are then combined to describe non
deterministic sequences of reactions. The language constructs are inspired by regular expressions, process
algebra (sequence, choice, loop, concurrency). The set of statements can be enriched with user defined
operators. A notion of stochastic directive is also provided, in order to finely influence the selection of a
particular class of scenarios.

Keywords: Reactive systems, synchronous programming, language design, test, simulation.

1 Introduction

The targeted domain is the one of reactive systems, where an execution is a (vir-
tually) infinite sequence of input/output reactions. Examples of such systems are
control/command in industrial process, embedded computing systems in transporta-
tion etc.

Testing reactive software raises specific problems. First of all, a single execution
may require thousands of atomic reactions, and thus as many input vector values.
It is almost impossible to write input test sequences by hand: they must be auto-
matically generated according to some concise description. More specifically, the
relevance of input values may depend on the behavior of the program itself: the
program influences the environment which in turn influences the program. As a
matter of fact, the environment behaves itself as a reactive system, whose environ-

1 Emails: Pascal.Raymond@imag.fr, Yvan.Roux@imag.fr, Erwan.Jahier@imag.fr.
2 URL: http://www-verimag.imag.fr
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ment is the program under test. This feed-back aspect makes off-line test generation
impossible: testing a reactive system requires to run it in a simulated environment.

All these remarks have lead to the idea of defining a language for describing
random reactive systems (in the sense that they are not fully predictable). Since
testing is the main goal, the programming style should be close to the intuitive
notion of test scenarios, which means that the language is imperative and sequential.

Note that, even if testing is the main goal, such a language can be useful for other
purposes. In particular, for early prototyping and simulation, where constrained
random programs can implement missing modules.

For programming random systems, one solution is to use a classical (determin-
istic) language together with a random procedure. In some sense, non-determinism
is achieved by relaxing deterministic behaviors. We have adopted an opposite solu-
tion where non-determinism is achieved by constraining chaotic behaviors; in other
terms, the proposed language is mainly relational, not functional.

In the language Lutin, non predictable atomic reactions are expressed as in-
put/output relations. Those atomic reactions are combined using statements like
sequence, loop, choice or parallel composition. Since simulation (execution) is the
goal, the language also provides stochastic constructs to express that some scenarios
are more interesting/realistic than others.

Since the first version [1], the language has evolved with the aim of being a
user-friendly, powerful programming language. The basic statements (inspired by
regular expressions), have been completed with more sophisticated control struc-
tures (parallel composition, exceptions and traps) and a functional abstraction has
been introduced in order to provide modularity and reusability.

This work is indeed related to synchronous programming languages [2]. Some
constructs of the language (traps and parallel composition) are directly inspired
by the imperative synchronous language Esterel [3], while the relational part (con-
straints) is inspired by the declarative language Lustre [4].

Related works are abundant in the domain of models for non-deterministic (or
stochastic) concurrent systems: Input/Output automata [5], and their stochastic
extension [6]; stochastic extension of process algebra [7,8]. There are also relations
with concurrent constraint programming [9], particularly with works that adopt a
synchronous approach of time and concurrency [10,11]. A general characteristic
of these models is that they are defined to perform analysis of stochastic dynamic
systems (e.g., model checking, probabilistic analysis). On the contrary, Lutin is
designed with the aim of being a user-friendly programming language. On one
hand, the language allows to concisely describe, and then execute a large class of
scenarios. On the other hand, it is in general impossible to decide if a particular
behavior can be generated and even less with which probability.

The paper is organized as follows: it starts with an informal presentation of the
language. Then the operational semantics is formally defined in terms of constraints
generator. Some important aspects, in particular constraints solving, are parameters
of this formal semantics: they can be adapted to favor the efficiency or the expressive
power. These aspects are presented in the implementation section. Finally, we
conclude by giving some possible extensions of this work.

2
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2 Overview of the language

2.1 Reactive, synchronous systems

The language is devoted to the description of reactive systems. Those systems have a
cyclic behavior: they react to input values by producing output values and updating
their internal state. We adopt the synchronous approach, which in this case simply
means that the execution is viewed as a sequence of pairs “input values/output
values”.

Such a system is declared with its inputs and output variables; they are called
the support variables of the system.

Example 2.1 We illustrate the language with a simple example that receives a
Boolean (c) and a real (t) and produces a real x. The high-level specification is
that x should get closer to t when c is true, or should tend to zero otherwise. The
header of the program is:

system foo(c: bool; t: real) returns (x: real) = statement
The core of the program (statement) will be developed later.

During the execution, input values are provided by the environment: they are
uncontrollable variables. The program reacts by producing output values: they are
controllable variables.

2.2 Variables, reactions and traces

The core of the system is a statement describing a sequence of atomic reactions.
In Lutin, a reaction is not deterministic: it does not define precisely the output
values, but just states constraints on these values. For instance, the constraint
((x > 0.0) and (x < 10.0)) states that the current output should be some value
comprised between 0 and 10.

Constraints may involve inputs, for instance: ((x > t - 2.0) and (x < t)).
In this case, during the execution, the actual value of t is substituted, and the
resulting constraint is solved.

In order to express temporal constraints, previous values can be used: pre id de-
notes the value of the variable id at the previous reaction. For instance (x > pre x)
states that x must increase in the current reaction. Like inputs, pre variables are
uncontrollable: during the execution, their values are inherited from the past and
cannot be changed: this is the non-backtracking principle.

Performing a reaction consists in producing, if it exists, a particular solution of
the constraint. Such a solution may not exist:

Example 2.2 In the constraint:
(c and (x > 0.0) and (x < pre x + 10.0))

c (input) and pre x (past value) are uncontrollable, so, during the execution, it
may appear that c is false and/or that pre x is less than −10.0. In those cases, the
constraint is unsatisfiable: we say that the constraint deadlocks.

Local variables may be useful auxiliaries for expressing complex constraints.
They can be declared within a program:

3
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local ident : type in statement
A local variable behaves as a hidden output: it is controllable and must be produced
as long as the execution remains in its scope.

2.3 Composing reactions

A constraint (Boolean expression) represents an atomic reaction: it is in some sense
a snapshot of the current variable values. Scenarios are built by combining such
snapshots with temporal statements. We use the term trace to design expressions
made of temporal statements; constraints are implicitly traces of length 1.

The basic trace statements are inspired by regular expression: sequence (fby),
unbounded loop (loop) and non-deterministic choice (|).

Because of this design choice, the notion of sequence differs from the one
of Esterel, which is certainly the reference in control-flow oriented synchronous
language[3]. In Esterel, the sequence (semicolon) is instantaneous, while the Lutin
construct fby “takes” one instant of time.

Example 2.3 With those operators, we can propose a first version for our example.
In this version, the output tends to 0 or t according to a first order filter. The non-
determinism resides in the initial value, and also in the fact that the system is
subject to failure and may miss the c command.

((-100.0 < x) and (x < 100.0)) fby -- initial constraint
loop {

(c and (x = 0.9*(pre x) + 0.1*t)) -- x gets closer to t
| ((x = 0.9*(pre x)) -- x gets closer to 0
}

Initially, the value of x is (randomly) chosen between -100 and +100, then, forever,
it may, tend to t or to 0.

Note that, inside the loop, the first constraint (x tends to t) is not satisfiable
unless c is true, while the second is always satisfiable. If c is false, the first constraint
deadlocks. In this case, the second branch (x gets closer to 0) is necessarily taken. If
c is true, both branches are feasible: one is randomly selected, and the corresponding
constraint is solved.

This illustrates an important principle of the language: the reactivity principle
states that a program may only deadlock if all its possible behaviors deadlock.

2.4 Traces, termination and deadlocks

Because of non-determinism, a behavior has in general several possible first reactions
(constraints). According to the reactivity principle, it deadlocks only if all those
constraints are not satisfiable. If at least one reaction is satisfiable, it must “do
something”: we say that it is startable.

Termination, startability and deadlocks are important concepts of the language;
here is a more precise definition of the basic statements according to those concepts:

• A constraint c, if it is satisfiable, generates a particular solution and terminates,

4
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otherwise it deadlocks.
• st1 fby st2 executes st1, and, if and when it terminates, executes st2. If t1

deadlocks, the whole statement deadlocks.
• loop st, if st is startable, behaves as st fby loop st, otherwise it terminates.

Intuitively, the meaning is “loop as far as possible”.
• {st1 |... |stn } randomly chooses one of the startable statements from st1...stn.

If none of them are startable, the whole statement deadlocks.
• The priority choice {st1 |>... |>stn } behaves as st1 if st1 is startable, otherwise

behaves as st2 if st2 is startable, etc. If none of them are startable, the whole
statement deadlocks.

• try st1 do st2 catches any deadlock occurring during the execution of st1 (not
only at the first step). In case of deadlock, the control passes to st2.

2.5 Well-founded loops

Let’s denote by ε the identity element for fby (i.e. the unique behavior such that
b fby ε = ε fby b = b). Although this “empty” behavior is not provided by the
language, it is helpful for illustrating a problem due to the loops.

As a matter of fact, the simplest way to define the loop is to state that “loop c”
is equivalent to “c fby loop c |>ε”, that is, try in priority to perform one iteration,
and if it fails, stop. According to this definition, nested loops may generate infinite,
instantaneous loops, as shown in the following example:

Example 2.4 loop {loop c}
Performing an iteration of the outer loop consists in executing the inner loop loop c.
If c is not currently satisfiable, loop c terminates immediately, and thus, the iter-
ation is actually “empty”: it generates no reaction. However, since it is not a
deadlock, this strange behavior is considered by the outer loop as a normal itera-
tion. As a consequence, another iteration is performed, which is also empty, and so
on: the outer loop keeps the control forever but does nothing.

One solution is to state that such programs are incorrect. Statically check-
ing whether a program will infinitely loop or not is impossible. Some over-
approximation is necessary, which will reject all the incorrect programs, but also
lots of correct ones. For instance, a program as simple as: “loop { {loop a} fby
{loop b } }” will certainly be rejected as potentially incorrect.

We think that such a solution is far to restrictive and tedious for the user, and
we prefer to slightly modify the semantics of the loop. The solution retained is to
introduce the well-founded loop principle: a loop statement may stop or continue,
but if it continues it must do something. In other terms, empty iterations are
forbidden.

The simplest way to explain this principle is to introduce an auxiliary operator
st \ε: if st terminates immediately, st \ε deadlocks, otherwise it behaves as st. The
correct definition of loop st follows:
• if st \ε is startable, behaves as st \ε fby loop st,
• otherwise terminates.

5
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2.6 Influencing non-determinism

When executing a non-deterministic statement, the problem of which choice should
be preferred arises. The default is that, if k of the n choices are startable, each of
them is chosen with a probability 1/k.

In order to influence this choice, the language provides a mechanism of relative
weights:

{st1 weight w1 |... |stn weight wn }

Weights may be integer constants, or, more generally, uncontrollable integer expres-
sions. In other terms, the environment and the past may influence the probabilities.

Example 2.5 In a first version (example 2.3), our example system may ignore the
command c with a probability 1/2. This case can be made less probable by using
weights (when omitted, a weight is implicitly 1):

loop {
(c and (x = 0.9*(pre x) + 0.1*t)) weight 9

| ((x = 0.9*(pre x))
}

In this new version, a true occurrence of c is missed with the probability 1/10.

Note that weights are not commands, but rather directives. Even with a big
weight, a non startable branch has a null probability to be chosen, which is the case
in the example when c is false.

2.7 Random loops

We want to define some loop structure where the number of iterations is not fully
determined by deadlocks. Such a construct can be based on weighted choices, since
a loop is nothing but a binary choice between stopping and continuing. However,
we found it more natural to define it in terms of expected number of iterations.
Two loop “profiles” are provided:
• loop[min,max]: the number of iterations should be between the constants min

and max
• loop~av:sd: the average number of iteration should be av, with a standard devi-

ation sd.
Note that random loops, just like other non-deterministic choices, follow the re-
activity principle: depending on deadlocks, looping may sometimes be required or
impossible. As a consequence, during an execution, the actual number of iterations
may significantly differ from the “expected” one (see §3,§4.2).

Moreover, just like the basic loop, they follow the well-founded loop principle,
which means that, even if the core contains nested loops, it is impossible to perform
“empty” iterations.

2.8 Parallel composition

The parallel composition of Lutin is synchronous: each branch produces, at the same
time, its local constraint. The global reaction must satisfy the conjunction of all

6
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those local constraints. This approach is similar to the one of temporal concurrent
constraint programming [11].

The termination of the concurrent execution is directly inspired by the language
Esterel. During the execution:
• if one or more branches abort (deadlock), the whole statement aborts,
• otherwise, the parallel composition terminates if and when all the branches have

terminated.
The concrete syntax may seem strange since it suggests a non-commutative opera-
tor, this choice is explained in the next section.

{st1 &>... &>stn }

2.9 Parallel composition versus stochastic directives

It is impossible to define a parallel composition which is fair according to the stochas-
tic directives, as shown in the following example.

Example 2.6 Consider the statement:
{ {X weight 1000 |Y } &> {A weight 1000 |B } }
where X, A, X∧B, A∧Y are all startable, but not X∧A.
The priority can be given:
• to X∧B, but it does not respect the stochastic directive of the second branch,
• to A∧Y, but it does not respect the stochastic directive of the first branch.

In order to solve the problem, the stochastic directives are not treated in parallel,
but in sequence, from left to right:
• the first branch “plays” first, according its local stochastic directives,
• the second one makes its choice, according to what has been chosen by the first

one etc.
In the example, the priority is then given to X∧B.

Note that the concrete syntax (&>) has been chosen to reflect the fact that
the operation is not commutative: the treatment is parallel for the constraints
(conjunction), but sequential for stochastic directives (weights).

2.10 Exceptions

User-defined exceptions are mainly a means for by-passing the normal control flow.
They are inspired by exceptions in classical languages (Ocaml) and also by the trap
signals of Esterel.

Exceptions can be globally declared outside a system ( exception ident ) or
locally within a statement, in which case the standard binding rules hold:

exception ident in st
An existing exception ident can be raised with the statement:

raise ident
and caught with the statement:

catch ident in st1 do st2

7
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If the exception is raised in st1, the control immediately passes to st2. The do part
may be omitted, in which case the control passes in sequence.

2.11 Modularity

An important point is that the notion of system is not a sufficient modular abstrac-
tion. In some sense, systems are similar to main programs in classical languages:
they are entry point for the execution but are not suitable for defining “pieces” of
behaviors.

Data combinators.
A good modular abstraction would be one that allows to enrich the set of com-

binators. Allowing the definition of data combinators is achieved by providing a
functional-like level in the language. For instance, one can program the useful
“within an interval” constraint:

let within(x, min, max : real) : bool =
(x >= min) and (x <= max)

Once defined, this combinator can be instantiated, for instance:
within(a, 0.8, 0.9) or within(a + b, c - 1.0, c + 1.0)
Note that such a combinator is definitively not a function in the sense of computer
science: it actually computes nothing. It is rather a well typed macro defining how
to build a Boolean expression with three real expressions.

Reference arguments.
Some combinators specifically require support variables as argument (input, out-

put, local). This is the case for the operator pre, and, as a consequence, for any
combinator that uses pre. This problem is solved by adding the flag ref to the
type of such parameters.

Example 2.7 The following combinator defines the generic first order filter con-
straint. The parameter y must be a real support variable (bool ref) since its
previous value is required. The other parameters can be any real expressions.

let fof (y: real ref; gain, x : real) : bool =
(y = gain*(pre y) + (1.0-gain)*x)

Trace combinators.
User defined combinators are extended to temporal statements. A dedicated

type trace is introduced, which is associated to any statement expressions, and by
extension, to the result and the parameters of behavior combinators.

Example 2.8 The following combinator is a binary parallel composition where the
termination is enforced when the second argument terminates:

8
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let as long as(X, Y : trace) : trace =
exception Stop in
catch Stop in {

X &> {Y fby raise Stop}
}

Note that the type trace is generic: it denotes behaviors on any set of support
variables.

Local combinators.
A macro can be declared within a statement, in which case the classical binding

rules hold; in particular, it may have no parameter at all.
let id (params): type = statement in statement

Example 2.9 We can now write more elaborated scenarios for the system of ex-
ample 2.3. In this new version, the system works almost properly for about 1000
reactions: if c is true, x tends to t 9 times out of 10, otherwise it tends to 0. During
this phase, the gain for the filters (a) randomly changes each 30 to 40 reactions. At
last, the system breaks down and x quickly tends to 0.

system foo(c: bool; t: real) returns (x: real) =
within(x, -100.0, 100.0) fby
local a: real in
let gen gain() : trace = loop {

within(a, 0.8, 0.9) fby loop[30,40] (a = pre a)
} in
as long as (

gen gain(),
loop~1000:100 {

(c and fof(x, a, t)) weight 9
| fof(x, a, 0.0)
}

} fby
loop fof(x, 0.7, 0.0)

The following timing diagram shows an execution of this program where the input
t is constant (150), and the command c toggles each about 50 steps.
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3 Operational semantics

3.1 Abstract syntax

For the sake of simplicity, the semantics is given on the flat language (user defined
macros are inlined). We use the following abstract syntax, where the intuitive
meaning of each construct is given as a comment:

t ::= c (constraint) | ε (empty behavior) | t \ ε (empty filter) | t · t (sequence)

| t∗ (priority loop) | t
(ωc,ωs)
k (random loop) | ↪→

x
(raise) | [t

x
↪→ t′] (catch)

| �n
i=1 ti (priority) | |ni=1 ti/wi (choice) | &n

i=1 ti (parallel)

This abstract syntax slightly differs from the concrete one on the following
points:

• the empty behavior (ε) and the empty behavior filter (t\ε) are internal constructs
that will ease the definition of the semantics,

• random loops are normalized by making explicit their weight functions:
· the stop function ωs takes the number of iteration already performed and returns

the relative weight of the “stop” choice,
· the continue function ωc takes the number of iteration already performed and

returns the relative weight of the “continue” choice.
These functions are completely determined by the loop profile in the concrete
program (interval or average, together with the corresponding static arguments).
See §4.2 for a precise definition of these weight functions.

• the number of already performed iterations (k) is syntactically attached to the
loop; this is convenient to define the semantics in terms of rewriting (in the initial
program, this number is obviously set to 0).

Definition 3.1 T denotes the set of trace expressions, and C the set of constraints.

3.2 The execution environment

The execution takes place within an environment which stores the variable values
(inputs and memories). Constraint resolution, weight evaluation and random selec-
tion are also performed by the environment. We keep this environment abstract.
As a matter of fact, resolution capabilities and (pseudo)random generation may
vary form one implementation to another, and they are not part of the reference
semantics.

The semantics is given in term of constraints generator. In order to generate
constraints, the environment should provide the following procedures:

Satisfiability. The predicate e |= c is true iff the constraint c is satisfiable in
the environment e.

Priority sort. Executing choices first requires to evaluate the weights in the
environment. This is possible because weights may dynamically depends on uncon-
trollable variables (memories, inputs), but not on controllable variables (outputs,
locals). Some weights may be evaluated to 0, in which case the corresponding choice
is forbidden. Then a random selection is made, according to the actual weights, to
determine a total order between the choices.

10
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For instance, consider the following list of pairs (trace/weight), where x and y

are uncontrollable variables:
(t1/x + y), (t2/1), (t3/y), (t4/2)

In a environment where x = 3 and y = 0, weights are evaluated to:
(t1/3), (t2/1), (t3/0), (t4/2)

The choice t3 is erased, and the remaining choices are randomly sorted according
to their weights. The resulting (total) order may be:

• t1, t2, t4 with a probability 3/6× 1/3 = 1/6
• t1, t4, t2 with a probability 3/6× 2/3 = 1/3
• t4, t1, t2 with a probability 2/6× 3/4 = 1/4
• etc.

All these treatments are “hidden” within the function Sorte which takes a list of
pairs (choice/weights) and returns an ordered choices list.

3.3 The step function

An execution step is performed by the function Step(e, t), taking an environment e

and a trace expression t. It returns an action which is either:
• a transition c→n, which means that t produces a satisfiable constraint c and rewrite

itself in the (next) trace n,
• a termination ↪→

x, where x is a termination flag which is either ε (normal termi-
nation), δ (deadlock) or some user-defined exception.

Definition 3.2 A denotes the set of actions, and X denotes the set of termination
flags.

3.4 The recursive step function

The run function is defined via a recursive function Se(t, g, s) where the parameters
g and s are continuation functions returning actions.
• g : C × T 7→ A is the goto function, defining how a local transition should be

treated according to the calling context.
• s : X 7→ A is the stop function, defining how a local termination should be treated

according to the calling context.
At the top-level, Se is called with the trivial continuations:

Step(e, t) = Se(t, g, s) with g(c, v) = c→v and s(x) = ↪→

x

Basic traces. The empty behavior raises the termination flag in the current con-
text. A raise statement terminates with the corresponding flag. At last, a constraint
generates a goto or raises a deadlock, depending on its satisfiability.

Se(ε, g, s) = s(ε)
Se( ↪→

x
, g, s) = s(x)

Se(c, g, s) = if e |= c then g(c, ε) else s(δ)

11
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Sequence. The rule is straightforward:

Se(t · t′, g, s) = Se(t, g′, s′) where:
g′(c, n) = g(c, n · t′)

s′(x) = if x = ε then Se(t′, g, s) else s(x)

Priority choice. We only give the definition of the binary choice, since the operator
is right-associative. This rule formalizes the reactivity principle: all possibilities in
t must have deadlock before t′ is taken into account.

Se(t � t′, g, s) = if r 6= ↪→

δ then r else Se(t′, g, s) where r = Se(t, g, s)

Empty filter and priority loop. The empty filter intercepts the termination of
t and replaces it by a deadlock:

Se(t \ ε, g, s) = Se(t, g, s′) where s′(x) = if x = ε then s(δ) else s(x)

The semantics of the loop is then defined according to the equivalence:

t∗⇔ (t \ ε) · t∗ � ε

Catch. This case covers the operators try (z = δ) and catch (z is an exception):

Se([t
z

↪→ t′], g, s) = Se(t, g′, s′) where:

g′(c, n) = g(c, [n
z

↪→ t′])
s′(x) = if x = z then Se(t′, g, s) else s(x)

Parallel composition. We only give the definition of the binary case, since the
operator is right-associative.

Se(t & t′, g, s) = Se(t, g′, s′) where:
s′(x) = if x = ε then Se(t′, g, s) else s(x)

g′(c, n) = Se(t′, g′′, s′′)
s′′(x) = if x = ε then g(c, n) else s(x)

g′′(c′, n′) = g(c ∧ c′, n & n′)

Weighted choice. The evaluation of the weights, and the (random) total ordering
of the branches, are both performed by the function Sorte (cf. §3.2).

if Sorte(ti/wi) = ∅: Se(|ni=1 ti/wi, g, s) = s(δ)
otherwise: Se(|ni=1 ti/wi, g, s) = Se(� Sorte(t1/w1, · · · , tn/wn), g, s)

Random loop. The semantics is defined according to the equivalence:

t
(ωc,ωs)
i ⇔ (t \ ε) · t(ωc,ωs)

i+1 /ωc(i) | ε/ωs(i)

3.5 A complete execution

Solving a constraint. The main role of the environment is to store the values
of uncontrollable variable: it is a pair of stores “(past values, input values)”. For
such an environment e = (ρ, ι), and a satisfiable constraint c, we suppose given a
procedure able to produce a particular solution of c: Solveρ,ι(c) = γ (where γ is a
store of controllable variables). We keep this Solve function abstract, since it may
vary from one implementation to another (see §4).
Execution algorithm. A complete run is defined according to:

12
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• a given sequence of input stores ι0, ι1, · · · , ιn,
• an initial (main) trace t0,
• an initial previous store (values of pre variables) ρ0

It produces a sequence of (controllable variables) stores γ1, γ2, ..., γk, where k ≤
n. For defining this output sequence, we use intermediate sequences of traces
(t1, · · · , tk+1), previous stores (ρ1, · · · , ρk), environments (e0, · · · , ek), and con-
straints (c0, · · · , ck). The relation between those sequences are listed below, for
all step j = 0 · · · k:
• the current environment is made of previous and input values: ej = (ρj , ιj)
• the current trace makes a transition: ej : tj

cj→tj+1

• a solution of the constraint is elected: γj = Solveej (cj)
• the previous store for the next step is the union of current inputs/outputs: ρj+1 =

(ιj ⊕ γj)
At the end, we have:
• either k = n, which means that the execution has run to completion,
• or (ρk+1, ιk+1) : tk+1 ↪→

x which means that it has been aborted.

4 Implementation

A prototype has been developed, which implements the operational semantics pre-
sented in the previous section. This tool can:
• interpret/simulate Lutin programs in a file-to-file (or pipe-to-pipe) manner. This

tool serves for simulation/prototyping: several Lutin simulation sessions can be
combined with other reactive process in order to animate a complex system.

• compile Lutin programs into the internal format of the testing tool Lurette. This
format, called Lucky, is based on flat, explicit automata [12]. In this case, Lutin
serves as a high level language for designing test scenarios.

4.1 Notes on constraint solvers

The core semantics only defines how constraints are generated, not how they are
solved. This choice is motivated by the fact that there is no “ideal” solver.

A required characteristic of such a solver is that it must provide a constructive,
complete decision procedure: methods that can fail and/or that are not able to
exhibit a particular solution are clearly not suitable. Basically, a constraint solver
should provide:
• a syntactic analyzer for checking if the constraints are supported by the solver

(e.g. linear arithmetics); this is necessary because the language syntax allows to
write arbitrary constraints,

• a decision procedure for the class of constraints accepted by the checker,
• a precise definition of the election procedure which selects a particular solution

(e.g. in terms of fairness).
Even with those restriction, there is no obvious best solver:
• it may be efficient but limited in terms of capabilities,
• it may be powerful, but likely to be very costly in terms of time and memory.

13
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The idea is that the user should choose between several solvers (or several options
of a same solver) the one which best fits his needs.

Actually, we use the solver that have been developed for the testing tool
Lurette [13,14]. This solver is quite powerful, since it covers Boolean algebra and
linear arithmetics. Concretely, constraints are solved by building a canonical repre-
sentation which mixes Binary Decision Diagrams and convex polyhedra.

Because it is very powerful, this method is also costly. However the solver ben-
efits from several years of experimentation and optimizations (partitioning, switch
form polyhedra to intervals whenever it is possible).

The election of a particular solution is also quite sophisticated:
• The basic rule is to ensure some fairness between the solutions. This is achieved by

simulating a uniform choice among the solutions domain. Since uniform selection
within a polyhedron is a complex problem, several options are available ranging
from a simple, rough approximation to a very accurate, and thus costly one.

• The solver can also be parameterized to select some class of interesting solutions
(e.g. limit values corresponding to the polyhedra vertices).

4.2 Notes on predefined loop profiles

In the operational semantics, loops with iteration profile are translated into bi-
nary weighted choices. Those weights are dynamic: they depend on the number of
(already) performed iterations k.
Interval loops. For the “interval” profile, those weights functions are formally
defined, and thus, they could take place in the reference semantics of the language.
For a given pair of integer (min,max), such that 0 ≤ min ≤ max, and a number k

of already performed iterations, we have:
• if k < min then ωs(k) = 0 and ωc(k) = 1 (loop is mandatory),
• if k ≥ max then ωs(k) = 1 and ωc(k) = 0 (stop is mandatory),
• if min ≤ k < max then ωs(k) = 1 and ωc(k) = 1 + max− k

Average loops. There is no obvious solution for implementing the “average”
profile in terms of weights. A more or less sophisticated (and accurate) solution
should be retained, depending on the expected precision.

In the actual implementation, for an average value av and a standard variation
sv, we use a relatively simple approximation:
• First of all, the underlying discrete repartition law is approximated by a contin-

uous (Gaussian) law. As a consequence, the result will not be accurate if av is
too close to 0, and/or if st is too big comparing to av. Concretely we must have
10 < 4 ∗ sv < av.

• The Gaussian repartition, for which it is well known that there is no algebraic
form, is itself approximated by using an interpolation table (512 samples with a
fixed precision of 4 digits).

14
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5 Conclusion

We propose a language for describing constrained-random reactive system. Its first
purpose is to describe test scenarios, but it may also be useful for prototyping and
simulation.

We have developed a compiler/interpreter which strictly implements the oper-
ational semantics presented here. Thanks to this tool, the language is integrated
into the framework of the tool Lurette, where it is used to describe test scenar-
ios. Further works concerns the integration of the language within a more general
prototyping framework.

Other works concern the evolution of the language. We plan to introduce a
notion of signal (i.e. event), which is useful for describing values that are not
always available (this is related to the notion of clocks in synchronous languages).
We also plan to allow the definition of (mutually) tail-recursive traces. Concretely,
that means that a new programming style would be allowed, based on explicit
concurrent, hierarchic automata.
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Abstract

This paper combines two successful techniques from software engineering, aspect-oriented programming and
design-by-contract, and applies them in the context of reactive systems. For the aspect language Larissa
and contracts expressed with synchronous observers, we show how to apply an aspect asp to a contract C
and derive a new contract C′, such that for any program P which fulfills C, P with asp fulfills C′. We
validate the approach on a medium-sized example.

Keywords: Aspect-oriented programming, Design-by-contract, synchronous languages

1 Introduction

1.1 Synchronous Languages and Aspect-Oriented Programming

Aspect-oriented programming (AOP) offers facilities to a base language which aim
at encapsulating crosscutting concerns. These are concerns that cannot be properly
captured into a module by the decomposition offered by the base language. AOP
languages express crosscutting concerns in aspects, and weave (i.e. compile) them
in the program with an aspect weaver.

All the aspect extensions of existing languages (like AspectJ [7]) share two no-
tions: pointcuts and advice. A pointcut describes, with a general property, the
program points (called join points) where the aspect should intervene (e.g., all the
methods of the class X, all the methods whose name contains visit, etc.). The
advice specifies what has to be done at each join point (execute a piece of code
before the normal code of the method, for instance).

Most existing aspect languages cannot be used in the context of reactive systems,
because they lack the semantic properties needed for formal verification, and the
programming languages used for reactive systems are often different from general-
purpose programming languages. Therefore, we developed the aspect language La-
rissa [1] as an extension to the synchronous programming language Argos. Argos is
a hierarchical automata language, based on Mealy machines. It seems a good can-
didate as a base language, as it is the simplest language with the parallel structure
which we want to crosscut, and which is typical for synchronous languages. Larissa
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ErrorErrorError

a a

a/err

(b)
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b
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b
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b

a.b

b/err

b
a.b

b

(c)

true/err

true/err
b/err

a.b

b/err

(a): aMFF (d): gMFF

Fig. 1. The contract for the MFF. Notations: in each automaton, the initial state is denoted with a little
arrow; the label on transitions are expressed by “triggering condition / outputs”, e.g. a transition
labelled by “a/b” is triggered when a is true and emits b. Negation is expressed with an overbar, and
conjunction with a dot. The observers accept all traces that do not lead to state Error.

has strong semantic properties, like the preservation of equivalence between pro-
grams. The approach presented in this paper strongly depends on these properties.

1.2 Synchronous Languages and Design-by-Contract

Design-by-Contract [14] is a design principle, originally introduced for object-orient-
ed systems, where a method is specified by a contract. A contract is a specification
in form of an implication between an assumption clause and a guarantee clause. A
method fulfills its contract if after its execution, the guarantee holds if the assump-
tion was true when the program was called.

Contracts have been adapted to reactive systems by [12]. Reactive systems
constantly receive inputs from their environment, and emit outputs to it. Therefore,
it seems natural to let assumptions restrict the inputs, and let guarantees ensure
properties on the outputs. Additionally, what a program is allowed to do often
depends to a large extent on previous occurrences of signals. A convenient way to
express such temporal properties over input and output traces are observers. An
observer [6] is a program that observes the inputs and the outputs of the program,
without modifying its behavior, and computes a safety property (in the sense of
safety/liveness properties as defined in [8]). Observers have a single output err,
which is emitted to show that a trace is not accepted. They can be expressed in
the same language as the program.

As an example, consider the following contract for a mono-stable flip-flop (MFF)
with one input a and one output b. The contract is composed of an assumption,
shown in Figure 1(a), which states that a’s always occur in pairs, and a guarantee
consisting of two automata, shown in Figures 1(b) and (c), which are composed
in parallel. The automaton in Figure 1(b) guarantees that a single b is never
emitted, and the automaton in Figure 1(c) guarantees that when a occurs while
no b is emitted, b is emitted in the next instant. The product of Figure 1(b) and
Figure 1(c) is shown in Figure 1(d).

1.3 Combining Contracts and Aspects

AOP and design-by-contract can hardly be used concurrently. Obviously, the con-
tract of a program is invalidated when an aspect is applied to it. Consider the
AspectJ example in Figure 2. The pointcut (line 7) intercepts calls to method m
(line 4), and the around advice (lines 9–11) modifies the intercepted calls by adding

2
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1 class c{
2 /∗ @assume i < 10 ∗/
3 /∗ @guarantee \result < 10 ∗/
4 int m( int i ) { . . . }
5 }
6

7 pointcut pcm( int i ) : ca l l ( int c .m( int ) ) && args ( i ) ;
8

9 int around( int i ) : pcm( i ){
10 return 1 + proceed ( i +1);
11 }

Fig. 2. Example of a contract in presence of an AspectJ aspect.

1 to the argument, then calling m through the proceed statement, and adding 1 to
the result. This modifies both the initial assumption (line 2) and guarantee (line 3)
of m. However, we can give a new contract for m in this case. To ensure that m
is called according to its initial specification, the assumption must be changed to
i < 9. On the other hand, the value returned by m may be higher than specified
by the original guarantee in the presence of the aspect: we can only guarantee that
\result < 11, provided m does not call itself recursively.

Deriving such new contracts appears to be an interesting approach to combine
AOP and contracts. However, this seems very difficult for contracts for Java pro-
grams and AspectJ, and it is not clear if meaningful contracts could be derived.
In this paper, we present a way to derive new contracts for Argos programs and
Larissa aspects. The idea is to apply an aspect asp to a contract C and obtain a
new contract C ′, such that if P fulfills C, then P / asp fulfills C ′.

The remainder of the paper is structured as follows: Section 2 defines Argos and
Larissa; Section 3 describes how to derive a new contract from a contract and an
aspect; Section 4 validates the approach on a larger example; Section 5 describes
related work; and Section 6 concludes. An extended version of this paper can be
found at [15].

2 Argos and Larissa

This section presents a restriction of the Argos language [13], and the Larissa ex-
tension [1]. Argos is defined as a set of operators on complete and deterministic
input/output automata communicating via Boolean signals. The semantics of an
Argos program is given as a trace semantics that is common to a wide variety of
reactive languages.

2.1 Traces and Trace Semantics

Definition 2.1 [Traces] Let I, O be sets of Boolean input and output variables
representing signals from and to the environment. An input trace, it, is a function:
it : N −→ [I −→ {true, false}]. An output trace, ot, is a function: ot : N −→
[O −→ {true, false}]. We denote by InputTraces (resp. OutputTraces) the set of

3
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all input (resp. output) traces. A pair (it, ot) of input and output traces (i/o-traces
for short) provides the valuations of every input and output at each instant n ∈ N .
We denote by it(n)[i] (resp. ot(n)[o]) the value of the input i ∈ I (resp. the output
o ∈ O) at the instant n ∈ N .

A set of pairs of i/o-traces S = {(it, ot) | it ∈ InputTraces ∧ ot ∈ OutputTra-
ces} is deterministic iff ∀(it, ot), (it′, ot′) ∈ S . (it = it′) =⇒ (ot = ot′), and it is
complete iff ∀it ∈ InputTraces . ∃ot ∈ OutputTraces . (it, ot) ∈ S.

A set of traces is a way to define the semantics of an Argos program P , given
its inputs and outputs. From the above definitions, a program P is deterministic if
from the same sequence of inputs it always computes the same sequence of outputs.
It is complete whenever it allows every sequence of every eligible valuations of inputs
to be computed.

2.2 Argos

The core of Argos is made of input/output automata, the synchronous product,
and the encapsulation. The synchronous product allows to put automata in parallel
which synchronize on their common inputs. The encapsulation is the operator that
expresses the communication between automata with the synchronous broadcast:
if two automata are put in parallel, they can communicate via a signal s. The
semantics of an automaton is defined by a set of traces, and the semantics of the
operators is given by translating expressions into flat automata.

Definition 2.2 [Automaton] An automaton A is a tuple A = (Q, sinit, I,O, T )
where Q is the set of states, sinit ∈ Q is the initial state, I and O are the sets of
Boolean input and output variables respectively, T ⊆ Q× Bool(I)× 2O ×Q is the
set of transitions. Bool(I) denotes the set of Boolean formulas with variables in I.
For t = (s, `, O, s′) ∈ T , s, s′ ∈ Q are the source and target states, ` ∈ Bool(I) is
the triggering condition of the transition, and O ⊆ O is the set of outputs emitted
whenever the transition is triggered. Without loss of generality, we consider that
automata only have complete monomials as input part of the transition labels.

The semantics of an automaton A = (Q, sinit, I,O, T ) is given in terms of a set
of pairs of i/o-traces. This set is built using the following functions:

S stepA : Q× InputTraces×N −→ Q
O stepA : Q× InputTraces×N \ {0} −→ 2O

S step(s, it, n) is the state reached from state s after performing n steps with the
input trace it; O step(s, it, n) are the outputs emitted at step n:

n = 0 : S stepA(s, it, n) = s

n > 0 : S stepA(s, it, n) = s′ O stepA(s, it, n) = O

where ∃(S stepA(s, it, n− 1), `, O, s′) ∈ T
∧ ` has value true for it(n− 1) .

We note Traces(A) the set of all traces built following this scheme: Traces(A)
defines the semantics of A. The automaton A is said to be deterministic (resp.

4

90 SLA++P 2007 Preliminary Version



Stauch

complete) iff its set of traces Traces(A) is deterministic (resp. complete) (see
Definition 2.1). Two automata A1, A2 are trace-equivalent, noted A1 ∼ A2, iff
Traces(A1) = Traces(A2).

Definition 2.3 [Synchronous Product] Let A1 = (Q1,sinit1, I1,O1, T1) and A2 =
(Q2, sinit2, I2,O2, T2) be automata. The synchronous product of A1 and A2 is the
automaton A1‖A2 = (Q1×Q2, (sinit1, sinit2), I1∪I2,O1∪O2, T ) where T is defined
by:

(s1, `1, O1, s
′
1) ∈ T1 ∧ (s2, `2, O2, s

′
2) ∈ T2 ⇐⇒ (s1s2, `1 ∧ `2, O1 ∪O2, s

′
1s
′
2) ∈ T .

The synchronous product of automata is both commutative and associative, and
it is easy to show that it preserves both determinism and completeness.

Definition 2.4 [Encapsulation] Let A = (Q, sinit, I,O, T ) be an automaton and
Γ ⊆ I ∪ O be a set of inputs and outputs of A. The encapsulation of A w.r.t. Γ is
the automaton A \ Γ = (Q, sinit, I \ Γ,O \ Γ, T ′) where T ′ is defined by:

(s, `, O, s′) ∈ T ∧ `+ ∩ Γ ⊆ O ∧ `− ∩ Γ ∩O = ∅ ⇐⇒ (s,∃Γ . `, O \ Γ, s′) ∈ T ′

`+ is the set of variables that appear as positive elements in the monomial ` (i.e.
`+ = {x ∈ I | (x ∧ `) = `}). `− is the set of variables that appear as negative
elements in the monomial l (i.e. `− = {x ∈ I | (x ∧ `) = `}).

Intuitively, a transition (s, `, O, s′) ∈ T is still present in the result of the encap-
sulation operation if its label satisfies a local criterion made of two parts: `+∩Γ ⊆ O

means that a local variable which needs to be true has to be emitted by the same
transition; `− ∩ Γ∩O = ∅ means that a local variable that needs to be false should
not be emitted in the transition.

If the label of a transition satisfies this criterion, then the names of the encap-
sulated variables are hidden, both in the input part and in the output part. This is
expressed by ∃Γ . ` for the input part, and by O \ Γ for the output part.

In general, the encapsulation operation does not preserve determinism nor com-
pleteness. This is related to the so-called “causality” problem intrinsic to syn-
chronous languages (see, for instance [2]).

2.3 Contracts for Argos

An observer is an automaton which specifies a class of programms fulfilling a certain
safety property. It is formally defined as follows.

Definition 2.5 [Observer] An observer is an automaton (Q ∪ {Error}, q0, I ∪ O,

{err}, T ) which observes an automaton that has inputs I and outputs O. When an
observer emits err, it will go to state Error and also emit err in the next instant.
A program P is said to obey an observer obs (noted P |= obs) iff P‖obs\O produces
no trace which emits err.

Transitions leading to the Error state are called Error transitions.

5
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A contract specifies a class of programs with two observers, an assumption and a
guarantee. Definition 2.6 is an auxiliary definition, used to formally define contracts
in Definition 2.7. ε denotes the empty trace.

Definition 2.6 [Trace Combination] Let it : N −→ [I −→ {true, false}] and
ot : N −→ [O −→ {true, false}] be traces, with I ∩ O = ∅. Then, it .ot : N −→
[I ∪O −→ {true, false}] is a trace s.t. ∀i ∈ I . it.ot(n)(i) = it(n)(i)∧ ∀o ∈ O . it.
ot(n)(o) = ot(n)(o).

Definition 2.7 [Contract] A contract over inputs I and outputs O is a tuple (A,G)
of two observers over I ∪ O, where A is the assumption and G is the guarantee. A
program P fulfills a contract (A,G), written P |= (A,G), iff

(it .ot , ε) ∈ Traces(A) ∧ (it , ot) ∈ Traces(P ) ⇒ (it .ot , ε) ∈ Traces(G) .

Intuitively, a guarantee G should only restrict the outputs of a program and an
assumption A should only restrict the inputs. We do not require this formally, but
contracts which do not respect this constraint are of little use. Indeed, if G restricts
the inputs more than A, it follows from Definition 2.7 that there exists no program
P s.t. P |=(A,G). Conversely, a program is usually placed in an environment E, s.t.
E |=A. If A restricts the outputs, no such E exists, as the outputs are controlled
by P .

2.4 Larissa

Argos operators are already powerful. However, there are cases in which they are
not sufficient to modularize all concerns of a program: a small modifications of the
global program’s behavior may require that we modify all parallel components, in
a way that is not expressible with the existing operators.

The goal of aspects being precisely to specify such cross-cutting modifications
of a program, we proposed an aspect-oriented extension for Argos [1], which allows
the modularization of a number of recurrent problems in reactive programs, like the
reinitialization. This leads to the definition of a new operator (the aspect weaving
operator), which preserves determinism and completeness of programs, as well as
semantic equivalence between programs.

Similar to aspects in other languages, a Larissa aspect consists of a pointcut,
which selects a set of join points, and an advice, which modifies these join points.

2.4.1 Join Point Selection
To preserver semantical equivalence, pointcuts in Larissa are not expressed in terms
of the internal structure of the base program (as for instance state names), but refer
to the observable behavior of the program only, i.e., its inputs and outputs.

Therefore, observers are well suited to express pointcuts. A pointcut is thus an
observer which selects a set of join point transitions by emitting a single output
JP, the join point signal. A transition T in a program P is selected as a join point
transition when in the concurrent execution of P and the pointcut, JP is emitted
when T is taken.

6
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A B b/c

(a) base program

a

b

c/JP

(b) pointcut

Fig. 3. Example pointcut.

Technically, we perform a parallel product between the program and the point-
cut and select those transitions in the product which emit JP. However, if we
simply put a program P and an observer PC in parallel, P ’s outputs O will become
synchronization signals between them, as they are also inputs of PC. They will
be encapsulated, and are thus no longer emitted by the product. We avoid this
problem by introducing a new output o′ for each output o of P : o′ will be used
for the synchronization with PC, and o will still be visible as an output. First, we
transform P into P ′ and PC into PC′, where ∀o ∈ O, o is replaced by o′. Second, we
duplicate each output of P by putting P in parallel with one single-state automa-
ton per output o defined by: duplo = ({q}, q, {o′}, {o}, {(q, o′, o, q)}). The complete
product, where O is noted {o1, ..., on}, is given by:

P(P,PC) = (P ′‖PC′‖duplo1
‖ ... ‖duplon

) \ {o′1, ..., o′n}

The join point transitions are those transitions of P(P,PC) that emit JP.
Figure 3 illustrates the pointcut mechanism. The pointcut (b) specifies any

transition which emits c: in base program (a), the loop transition in state B is
selected as a join point transition.

2.4.2 Specifying the Advice
In aspect oriented languages, the advice expresses the modification applied to the
base program. In Larissa, we define two types of advice: in the first type, an advice
replaces the join point transitions with advice transitions pointing to an existing
target states; in the second type, an advice introduces a Argos program between
the source state of the join point transition and an existing target state. In both
cases, target states have to be specified without referring explicitly to state names.

An advice adv has two ways of specifying the target state T among the existing
states of the base program P. T is the state of P that would be reached by executing
a finite input trace from either the initial state of P, adv is then called toInit advice,
or from the source state of the join point transition, adv is then called toCurrent
advice. As the base program is deterministic and complete, executing an input trace
from any of its states defines exactly one state.

The advice weaving operator / adv weaves a piece of advice adv in a program.
Definition 3.2 in the following section gives a formal definition for toInit advice.
The remainder of this section describes the different kinds of advice informally.

Advice Transitions
The first type of advice consists in replacing each join point transition with

an advice transition. Once the target state is specified by a finite input trace
σ = σ1 . . . σn, the only missing information is the label of these new transitions.
We do not change the input part of the label, so as to keep the woven automaton

7
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`2/Oins
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`2/O2, JP

`1/Oins

`1/O1, JP
`1/Oins

`2/O2, JP`1/O1, JP

σ1

(a) toInit aspect (b) toCurrent aspect

target state T

target state T

target state T

Fig. 4. Schematic toInit and toCurrent aspects. Advice transitions are in bold, join point transitions are
dotted.

I

b

a

...
...

I

b

a

...`/Oad
`/JP

(a) inserted automaton Ains (b) woven program

target state T

Fig. 5. Inserting an advice automaton.

deterministic and complete, but we replace the output part by some advice outputs
Oad. These are the same for every advice transition, and are thus specified in the
aspect. Advice transitions are illustrated in Figure 4.

Advice Programs
It is sometimes not sufficient to modify single transitions, i.e. to jump to another

location in the automaton in only one step. It may be necessary to execute arbitrary
code when an aspect is activated. In these cases, we can insert an automaton
between the join point and the target state.

Therefore, we use an inserted automaton Ains that terminates. Since Argos has
no built-in notion of termination, the programmer of the aspect has to identify a
final state F (denoted by filled black circles in the figures).

We first specify a target state T as explained above. Then, for every T, a copy of
the automaton Ains is inserted, which means: 1) replace every join point transition
J with target state T by a transition to the initial state I of this instance of Ains.
As for advice transitions, the input part of the label is unchanged and the output
part is replaced by the advice outputs Oad; 2) connect the transitions that went to
the final state F in Ains to T. Advice programs are illustrated in Figure 5.

2.4.3 Fully Specifying an Aspect
An aspect is given by the specification of its pointcut and its advice: asp =
(PC, adv), where PC is the pointcut and adv is the advice. adv is a tuple which con-
tains 1) the advice outputs Oad; 2) the type of the target state specification (toInit
or toCurrent); 3) the finite trace σ over the inputs of the program; and optionally,
4) Padv, the advice program. Thus, advice can be a tuple < Oad,type, σ >, or, with
an advice program, a tuple < Oad,type,σ, Padv >, with type ∈ {toCurrent, toInit}.
An aspect is woven into a program by first determining the join point transitions

8
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a

true/b
true/b

(a) (b)

a

a/b
a/b

a/b

a/b

Fig. 6. A possible implementation of the MFF (a), with the retriggerable aspect applied to it (b).

and then weaving the advice.

Definition 2.8 [Aspect weaving] Let P be a program and asp = (PC, adv) an
aspect for P . The weaving of asp on P is defined by

P / asp = P(P,PC)/ adv .

2.4.4 Example
Consider the MFF example from Section 1.2. We now want to make the MFF
re-triggerable, meaning that if an a is emitted during several following instants,
the MFF continues emitting b. We do this by applying the aspect ret= (PC,

< b, toInit, (a) >) to the MFF, where PC =({S},S,{a,b},{JP}, {(S,a.b,JP,S)}) is
a pointcut which selects all occurrences of a.b as join points. Figure 6(a) shows a
sample implementation of the MFF, and Figure 6(b) shows the result of applying
ret to it.

3 Weaving Aspects in Contracts

We want to apply an aspect asp not to a specific program, but to a class of programs
defined by a contract C, and obtain a new class of programs, defined by a contract
C ′, such that P |= C ⇒ P / asp |= C ′. To construct C ′, we simulate the effect
that the aspect has on a program as far as possible on the assumption and the
guarantee observers of C. However, an aspect cannot be applied directly to an
observer, because the aspect has been written for a program with inputs I and
outputs O, whereas for the observer, O are also inputs.

Therefore, we transform the observers of the contract first into non-determinis-
tic automata (NDA), which produce exactly those traces that the observer accepts.
We then weave the aspects into the NDA, with a modified definition of the weaving
operator. The woven NDA are then transformed back into observers. The obtained
observers may still be non-deterministic, and are thus determinized.

Except for the aspect weaving, all of these steps are different for the assumption
and the guarantee, as far as the Error transitions are concerned. This is because the
assumption and the guarantee have different functions in a contract: the assumption
states which part of the program is defined by the contract, and the guarantee gives
properties that are always true for this part. Indeed, a contract (A,G) can be
rewritten as (true,A ⇒G). Thus, the assumption can be considered as a negated
guarantee.

After weaving an aspect, the assumption must exclude the undefined part of any
program which fulfills the contract. Therefore, it must reject a trace (by emitting

9
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(a) (b) (c)

true/b
true/b

a

true/b a/b

a, a/b

a, a/b

a/b
a/b

a/b

a.b
a.ba.b

a.b

a

a.b

a/b

a
true/b

a.b

b/err

b/erraa

a

a.ba/b

Fig. 7. a: NDG(gMFF), b: NDG(gMFF)/ ret, c: OBSG(NDG(gMFF)/ ret).

err) as soon as there exists a program for which it cannot predict the behavior. The
guarantee, on the other hand, emits err only for traces which cannot be emitted
by any program which fulfills the contract. Therefore, after weaving an aspect, the
new guarantee may only emit err if it is sure that there exists no program that
produces the trace.

3.1 Formal Definitions

This paragraph describes the weaving of aspects into contracts in detail, and illus-
trates it on our running example. First, Definition 3.1 defines the transformation
of an observer into a NDA through two functions, one for guarantee observers and
one for assumption observers.

Definition 3.1 [Observer to NDA transformation] Let obs = (Q∪ {Error}, q0, I ∪
O, {err}, T ) be an observer with an error state Error over inputs I and outputs
O, with I ∩ O = ∅. NDG(obs) = (Q, q0, I,O, TNDG

) defines a NDA, where TNDG

is defined by (s, `I ∧ `O, ∅, s′) ∈ T ⇒ (s, `I , `+
O, s′) ∈ TNDG

. NDA(obs) = (Q ∪
{Error}, q0, I,O, TNDA

) defines a NDA, where TNDA
is defined by (s, `I ∧`O, o, s′) ∈

T ⇒ (s, `I , `+
O ∪ o, s′) ∈ TNDG

.

Note that the transitions in obs which emit err (i.e. the Error transitions)
have no corresponding transitions in NDG(obs). In the guarantee, these transitions
correspond to input/output combinations which are never produced by the program
and must not be considered by the aspect. As an example, consider the guarantee
of the MFF (Figure 1(d)). Its transformation into a NDA is shown in Figure 7(a).

In the assumption, on the other hand, the Error transition correspond to inputs
from the environment to which the program may react arbitrarily. If the aspect
replaces these transitions in the assumption, they are also replaced in the program,
and can thus be accepted from the environment by the woven program. Thus, error
transitions are not removed in NDA(obs), so that the aspect weaving can modify
them. The transformation of the assumption of the MFF (Figure 1(a)) is shown in
Figure 8(a).

We can now apply an aspect to a NDA. However, a trace may lead to several
states. Thus, for each join point transition, several advice transitions must be
created, one for each target state. We only give a definition for toInit advice, but
the extension to toCurrent advice and advice programs is straightforward.

Definition 3.2 [toInit weaving for NDA] Let A = (Q, sinit, I,O, T ) be an automa-
ton and adv = (Oadv, toInit, σ) a piece of toInit advice, with σ : [0, ..., `σ] −→
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Errora/err Error
a

Errora/err

a, a/ba, a/b

a, a/b a

a/b,a/b,err,

(a) (b) (c)

a, a/b

a, a/b

a

a/b,err, a.b
a/err

a.b

Fig. 8. a: NDA(aMFF), b: NDA(aMFF)/ ret, c: OBSA(NDA(aMFF)/ ret).

[I −→ {true, false}] a finite input trace of length `σ + 1. Let TARG = {s|s =
S stepA(sinit, σ, `σ)} be the set of all states reachable with σ. The advice weaving
operator /, weaves adv into A and returns the automaton A/ adv = (Q, sinit, I,O ∪
Oadv, T ′), where T ′ is defined as follows:(

(s, `, O, s′) ∈ T ∧ JP /∈ O
)

=⇒ (s, `, O, s′) ∈ T ′ (1)(
(s, `, O, s′) ∈ T ∧ JP ∈ O

)
=⇒ ∀targ ∈ TARG . (s, `, Oadv, targ) ∈ T ′ (2)

Transitions (1) are not join point transitions and are left unchanged. Transitions
(2) are the join point transitions, their final state targ is specified by the finite input
trace σ. S stepA (which has been naturally extended to finite input traces) executes
the trace during `σ steps, from the initial state of A. Figure 7(b) and Figure 8(b)
show the NDAs from our example with the retriggerable aspect from Section 2.4.4
woven into them. For both NDAs, the trace leads to a single state, thus only one
advice transition is introduced per join point transition.

Transforming a NDA back into an observer is different for assumptions and
guarantees. In the assumption, we do not add additional error transitions, but only
leave those already there. In the guarantee, we add transitions to the error state
from every state where the automaton is not complete. This is correct, as these
transitions correspond to traces that are never produced by any program.

Definition 3.3 [NDA to guarantee transformation] Let nd = (Q, q0, I,O, T ) be
a NDA. OBSG(nd) = (Q ∪ {Error}, q0, I ∪ O, {err}, T ′ ∪ T ′′) defines an observer,
where T ′ and T ′′ are defined by

(s, `, o, s′) ∈ T ⇒ (s, ` ∧ `o ∧ `O\o, ∅, s
′) ∈ T ′ (3)

(s, `, ∅, s′) /∈ T ′ ∧ s ∈ Q ∧ ` is a complete monomial over I ∪ O
⇒ (s, `, {err},Error) ∈ T ′′ (4)

where lO =
∧

o∈O o and lO =
∧

o∈O o for a set O of variables.

Definition 3.4 [NDA to assumption transformation] Let nd = (Q, q0, I,O∪{err},
T ) be a NDA. OBSA(nd) = (Q, q0, I ∪ O, {err}, T ′) defines an observer, where T ′

is defined by

(s, `, o ∪ e, s′) ∈ T ∧ o ⊆ O ∧ e ⊆ {err} ⇒ (s, ` ∧ `o ∧ `O\o, e, s
′) ∈ T ′

Figure 7(c) and Figure 8(c) show the NDAs from our example transformed back
into observers. As expected, the obtained guarantee in Figure 7(c) tells us that
whenever the program receives an a, it emits b’s the two following instants. The
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assumption, however, requires that if an a is emitted, it continues to be emitted
until there is no b.

The resulting observer may not be deterministic. However, it can be made
deterministic, as observers are acceptor automata. Determinization for guarantees
and assumptions is different: a guarantee must only emit err for a trace σ if all
programs fulfilling the contract never emit σ, and an assumption must emit err if
there exists a program fulfilling the contract which is not defined for σ.

Existing determinization algorithms can be easily adapted to fulfill these re-
quirements. We do not detail such algorithms here, but instead give conditions the
determinization for assumptions and guarantees must fulfill. The new assumption
and the new guarantee in the example are already deterministic, thus there is no
need to determinize them.

Definition 3.5 [Assumption Determinization] Let M be a NDA with outputs {err}.
DetA(M) is a deterministic automaton such that

(it , ot) ∈ Traces(DetA(M)) ⇔
(it , ot) ∈ Traces(M) ∧ @ot ′ . ot ′(n)[err] = true ∧ ot(n)[err] = false .

Definition 3.6 [Guarantee Determinization] Let M be a NDA with outputs {err}.
DetG(M) is a deterministic automaton such that

(it , ot) ∈ Traces(DetG(M)) ⇔
(it , ot) ∈ Traces(M) ∧ @ot ′ . ot ′(n)[err] = false ∧ ot(n)[err] = true .

We can now state the following theorem. See [15] for a proof.

Theorem 3.7 Let P be a program and let (A,G) be a contract. Then,

P |= (A,G)
⇒ P / asp |= (DetA(OBSA(NDA(A)/ asp)),DetG(OBSG(NDG(G)/ asp)))

4 Example: The Tramway Door Controller

We implement and verify a larger example, taken from the Lustre tutorial [11], a
controller of the door of a tramway. The door controller is responsible for opening
the door when the tram stops and a passenger wants to leave the tram, and for
closing the door when the tram wants to leave the station. Doors may also include
a gateway, which can be extended to allow passengers in wheelchairs enter and leave
the tram.

We implement the controller as an Argos program. We first develop a controller
for a door without the gangway, and then add the gangway part with aspects.
Figure 9 gives the in- and outputs of the controller with their specifications, and
also the in- and outputs which are added by the gangway. The controller uses
additional inputs, called Helper Signals, which are also shown in Figure 9. They
are calculated from the original inputs, by a program given in [15].

It is important for the safety of the passengers that the doors are never open
outside a station. We give a contract for the door controller, which focuses on this

12
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Controller Inputs: Controller Outputs:

inStation Tram is in station doorOK door is closed and ready to leave

leaving Tram wants to leave station openDoor opens the door

doorOpen the door is open closeDoor closes the door

doorClosed the door is closed beep emits a warning sound

askForDoor a passenger wants to leave the tram setTimer starts a timer

timer the timer set by setTimer has run out

Gangway Inputs: Gangway Outputs:

gwOut the gangway is fully extended extendGW extends the gangway

gwIn the gangway is fully retracted retractGW retracts the gangway

askForGW a passenger wants to use the gangway

Helper Signals Outputs:

acceptReq the passenger can ask for the door or the gw

doorReq the passenger has asked for the door to open

gwReq the passenger has asked for the gangway

depImm the tramway wants to leave the station

Fig. 9. The interfaces of the controller and the gangway, and the helper signals.

Out DepIn

Error
openDoor

inStation.openDoor

openDoor

inStation.openDoor

doorOK.(doorClosed∨openDoor)

doorClosed.doorOK.openDoor

Fig. 10. The guarantee of the contract of the controller.

property. The guarantee of the contract is shown in Figure 10, it ensures that the
controller emits doorOK only if the doors are closed, and openDoor only if the tram
is in a station. The contract has also an assumption, which requires that the door
behaves correctly (e.g., the door only opens if openDoor has been emitted). It is
given in [15], along with an implementation of the controller.

To formally verify that a tram door is always closed outside a station, we develop
a model that describes the possible behavior of the physical environment of the
controller, i.e. the door and the tramway. These models are expressed as Argos
observers, and are given in [15]. We then prove that the controller satisfies the
contract, and that the contract in the environment never violates the safety property.

4.1 Adding The Gangway

Two aspects are used to add support for the gangway: one aspect that extends the
gangway before the door is opened if a passenger has asked for it, and one aspect
that retracts the gangway when the tram is about to leave, if it is extended.

The pointcut PCext of the extension aspect selects all transitions where open-
Door.doorReq.doorClosed.gwOut is true, and the pointcut PCret of the retraction
aspect selects all transitions where doorOK.gwIn is true.

Both aspects insert an automaton and return then to the initial state of the join
point transitions. The inserted automata for the aspects are shown in Figure 11.
The extension aspect is specified by (PCext, < {}, toCurrent, (), Iext >), and the
retraction aspect by (PCret, < {retractGW}, toCurrent, (), Iret >).

We want to check that the new controller still verifies the safety property from
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gwOut/extendGW

gwOut

(a): Iext

gwIn

gwIn/retractGW

/retractGW

(b): Iret

Fig. 11. Inserted automata for the extension (a) and the retraction (b) aspect.

above, and also verifies two new safety properties, which require that the gangway
is always fully retracted while the tram is out of station, and that the gangway is
never moved when the door is not closed. Therefore, we weave the aspects into the
contract, and thus obtain a new contract that holds for controller with the aspects.
Finally, we check then that the environment, to which we added a model of the
gangway, satisfies the new assumption, and that the new guarantee satisfies the
safety requirements in the environment.

An alternative to this modular approach is to verify directly that the sample
controller with the aspects does not violate the given safety properties. One dis-
advantage of the alternative approach is that the woven controller may be much
bigger than the woven contract. To illustrate this problem, we verified the safety
properties using our implementation [9]. The source code of the door controller
example is available at [10]. Verifying the woven program takes 11.0 seconds 1 . On
the other hand, weaving the aspects into the guarantee of the controller contract
and verifying against the environment takes 3.7 seconds 1 , and verifying that the
sample controller verifies the contract and verifying that the environment fulfills
the assumption with the aspects takes < 0.5 seconds 1 . Thus, using this modular
approach to verify the safety properties of the controller is significantly faster than
verifying the complete program. Although the size of the woven controller is not
prohibitive in this example, this indicates that larger programs can be verified using
the modular approach.

5 Related Work

Goldman and Katz [5] modularly verify aspect-oriented programs using a LTL
tableau representation of programs and aspects. As opposed to ours, their sys-
tem can verify AspectJ aspects, as tools like Bandera [4] can extract suitable input
models from Java programs. It is, however, limited to so-called weakly invasive
aspects, which only return to states already reachable in the base program.

Clifton and Leavens [3] noted before us that aspects invalidate the specification of
modules, and propose that either an aspect should not modify a program’s contract,
or that modules should explicitly state which aspects may be applied to them.

6 Conclusion

We proposed a way to show exactly how a Larissa aspect modifies the contract of
a component to which it is applied. This allows us to calculate the effect of an
aspect on a specification instead of only on a concrete program. This approach
has several advantages. First, aspects can be checked against contracts even if the

1 Experiments were conducted on an Intel Pentium 4 with 2.4GHz and 1 Gigabyte RAM.
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final implementation is not yet available during development. Furthermore, if the
base program is changed, the woven program must not be re-verified, as long as
the new base program still fulfills the contract. Finally, woven programs can be
verified modularly, which may allow for larger program to be verified, as indicates
the example in Section 4.

We believe that the approach is exact in that it gives no more possible behaviors
for the woven program than necessary. I.e., for a contract C and a trace t ∈
Traces(C/ asp), there exists a program P s.t. P |= C and t ∈ Traces(P/ asp). This
remains however to be proven. A more interesting direction for future work would
be to derive contracts the other way round. Given a contract C and an aspect
asp, can we automatically derive a contract C ′ such that C ′/ asp |= C? Finally,
the proposed approach works only because we have restricted Argos and Larissa to
Boolean signals. It would be interesting to see if this approach can be extended to
programs with valued signals or variables.
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Abstract

We describe how we use Lustre to build global and accurate executable models of energy consumption in
sensor networks, intended to be used for both simulations and formal validation. One of the key ideas is
to build a component-based global model, in such a way that various abstractions of the same model can
be derived by unplugging a component and plugging a more abstract (or more detailed) one. This ability
to play with various abstractions that can be formally compared with one another is essential for a virtual
prototyping approach connected to formal validation tools. We comment on the properties of Lustre and
its development environment that make this approach feasible.

Keywords: sensor networks, formal modeling, simulation, energy consumption

1 Introduction

1.1 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are distributed computer systems composed of a
large number of small sensor nodes. There are many potential application areas [3].
The nodes have three main tasks: sensing their environment, processing the data
and communicating with the other nodes. All the nodes are identical, except one
or several sink nodes. A sink monitors the network. It collects the data and sends
requests to the sensor nodes. Nodes do not have enough power to reach the sink
directly with their radios, therefore communications are performed in a multi-hop

1 This work has been partially supported by the French RNRT project ARESA
2 Email:Florence.Maraninchi@imag.fr Florence.Maraninchi@imag.fr
3 Email:Ludovic.Samper@imag.fr Ludovic.Samper@imag.fr
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way. A wireless sensor network has no infrastructure, i.e., nodes do not have any
a priori knowledge about the rest of the network. Hence A WSN must be able to
self-organize. Nodes cooperate for this self-organization and also along the whole
life of the network to achieve the requested service. Finally, routing protocols have
to be tailored for WSNs (see, for instance [2]), in order to take new constraints
into account, among which: in WSNs, data flow from a particular region to the
sink(s) whereas, in traditional networks, any node may need to communicate and
establish a route with any other; it is usually not possible in WSNs to rely on a
global addressing mechanism; in the vicinity of a phenomenon, several nodes will
sense the same values and thus the same data may be generated; etc.

1.2 Virtual Prototypes of Sensor Networks

A sensor network may be considered as a whole, as a new kind of computer system
dedicated to one particular application. It is an embedded system, reacting to the
stimuli of some physical environment. It is also subject to the usual constraints of
embedded system design: resources are scarce, and it is very difficult, if not impos-
sible, to modify a sensor network’s behavior once it has been deployed. Moreover,
the sensors are usually powered by a battery that cannot be recharged. They should
therefore have the lowest consumption possible to maximize the network lifetime.

One of the main challenges is to perform energy-aware design. The problem is
difficult because all the elements of a sensor network have an influence on energy
consumption: the hardware of a node, the sensors, the medium-access-control and
routing protocols, the application itself, the initial self-organization phase, and even
the physical environment that stimulates the sensors (see, for instance [23], where
we showed that a precise modeling of the physical environment is compulsory for a
realistic estimation of the energy consumption).

The design of an energy-“optimal” solution is probably out of reach because
of all the interacting criteria. One has to build complete solutions and then to
evaluate them. Since a sensor network includes dedicated hardware, it may be long
and costly to build a complete solution before evaluating it.

For all these reasons, the usual approach is to build a virtual prototype of a
sensor network, and then to perform simulations or mathematical analyzes in order
to evaluate the energy consumption. This is the approach taken by people who
design new protocols, and show their benefits using a network simulator. In all
these approaches, a lot of abstractions are necessary, in order to build manage-
able models of very large systems (thousands of nodes). For instance, the energy
consumption may be evaluated by counting packets, and associating a worst-case
estimated energy with the transmission of one individual packet. In the section
“related work” below, we review the main approaches for the virtual prototyping
of sensor networks.

1.3 Contribution of the paper

In this paper, we describe our experiments in using a synchronous language, namely
Lustre, to build a global and executable model of a sensor network, including all
the elements that influence energy consumption: the details about the hardware of

2
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a node, the code of the protocols and the application, an executable model of the
physical environment that stimulates the sensors, and also a model of the physical
medium in which the radio communication occurs. Lustre is an appropriate lan-
guage for building such a detailed model, especially when it comes to describing the
detailed energy consumption of the hardware and its relationship with time.

The second very important point is that Lustre allows to build a clean component-
based model. This is crucial because complete models of sensor networks are huge,
and it is always necessary to abstract them, even for simulation purposes only. If a
global model is clearly structured into well-defined components, it means that one
can hope to replace one component by a more abstract one, and get a new global
model, more abstract then the original one. We show that Lustre provides such a
modular-abstraction framework.

Finally, Lustre is connected to various validation tools, ranging from automatic
test case generation to formal verification by means of model-checking or abstract
interpretation techniques. This means the model we build can be directly given as
input to these tools.

A first experiment in writing global models of sensor networks has given Glonemo

(for GLObal NEtwork MOdel), and was conducted using the language Reac-

tiveML [18,23]. It is itself inspired from a first use of ReactiveML for modeling
networks [19]. Glonemo is quite efficient, but not precise enough on the details of
the hardware. Moreover, ReactiveML is not connected to validation tools.

The Lustre model is 1500 lines long. It has been developed by K. Baradon
and A. Vasseur, two master students of the Telecom department of INPGrenoble.
It includes detailed energy models for all hardware parts that have a significant
energy consumption. The connection to validation tools has been established.

The paper is organized as follow: section 2 lists the elements that have to be
taken into account when building an accurate global model of a sensor network;
section 3 presents the main structure of the Lustre model; section 4 details the
components of the model and the way they are coordinated; section 5 presents
existing tools and methods designed to study sensor networks; section 6 lists the
current uses of our model, and section 7 concludes.

2 Aspects to be Taken into Account in a Realistic Model

2.1 Consumption of the radio and Behavior of the MAC protocol

The radio is the part of the node that consumes most, and mainly in emitting mode.
It is clear that the radio should not function at maximum power all the time. In
sensor networks, the Medium Access Control (MAC) protocol layer (the one that
monitors the radio) is designed in such a way that the radio spends a lot of time in
some idle mode, and very short periods in emitting mode.

In an accurate sensor network model, the various modes of the radio and their
associated consumption should be detailed. Moreover, the way the MAC protocol
triggers mode changes has to be described. This is because we want to observe
properties related to energy consumption. Other properties like latency, throughput,
bandwidth utilization or fairness are secondary.

3
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2.2 The CPU and the Memory

Even if the radio consumes a lot, the energy used to process data cannot be ne-
glected. According to Yuan and Qu [27], the processor is responsible for a consump-
tion of 30 percent of the total consumption of the node. Moreover for some MAC
protocols the micro-controller can be responsible for more than 90 % of the total
energy needed to receive one data packet [20]. A technique used to optimize the
energy consumed by the micro-controller is Dynamic Voltage Scaling (DVS). DVS
consists in adapting dynamically the voltage of the micro-controller according to the
load. This modifies the tradeoff between the consumption and the efficiency of the
MCU. When the voltage is low, the consumption is low too but the micro-controller
works slowly. This idea can be used in sensor networks [27].

If we want to reflect such technical solutions in our global models, this means
that we should also detail the running modes of the CPU (a small number of discrete
voltages is enough, the DVS is not driven in a continuous way). We should also
describe how the mode changes are triggered, and by whom.

The CPU DVS may be driven by explicit operations in the object code of an
application program, if a static analysis has identified pieces of the program where
the load is low. If there is no such sophisticated analysis available, the CPU DVS
is usually controlled by the operating system. In sensor networks, it may also be
the case that the CPU is awaken by some activity on the radio (when there will be
some data to process). In the sequel, we consider commands from the application.
Commands from the radio could be modeled with the same technique.

The consumption of the memory is less important but researches are conducted
on this topic [5,15]. If we want to take memory consumption into account, we
should include the description of the memory consumption, depending on the type
(RAM, Flash, ...). Some memories can have a standby mode in which they cannot
be read or written to, but consume less. In order to read or write, one has to put
the memory in normal mode first. Such a mechanism may also be driven by explicit
operations in the object code of an application program, if a static analysis has
identified pieces of the program during which some variables need not be accessed.

3 Overview of the Lustre Model

3.1 Principles and Main Structure

The structure of the Lustre model, called Lussensor, is inherited from the Glonemo

model written in ReactiveML.But the model has been enriched with more details
on the hardware of a node (DVS for the CPU, memory consumption of various
kinds of memories, etc.).

The idea is to include one modeling component for each source of energy con-
sumption we may want to model, even if we want to consider simple models where
not all the sources are described in full details. Each element of the model is a data-
flow box, also called node in Lustre. It has several input flows, several output flows,
and some internal memory. Nodes are connected together as in synchronous cir-
cuits. We comment on synchrony and asynchrony in section 7. The main structure
of the model is given by Figure 1.

4
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Fig. 1. Main Structure of the Model

The Lucky [10,11] part is used to model the
physical environment, following the ideas de-
scribed in [23]. We will concentrate on the
Lustre part here. There are n instances of
the same Lustre node sensor, representing
the n identical sensors of a network, plus a
special sink node. n has to be chosen stati-
cally, but we could choose n as the maximum
number of sensors potentially present in the
system; in this case, the model of a single sen-
sor has an additional state “non existing” and
it can be “created” or “destroyed” during the
simulation.

All the components of the model are deterministic Lustre programs, although
some of them need random values (e.g., the protocols). All the random values
needed in the components are exposed as explicit inputs, connected to global in-
puts of the model, and then to an external generator. We could use a call to an
external C function locally, but exposing the random value as an input is better for
analysis purposes, because explicit abstractions can be made on its value.

Inside the Lustre node that represents one sensor, everything is synchronous. It
is the right modeling since the physical node itself is a synchronous circuit. Between
the sensors however, it is not the case. Although the physical nodes of a sensor net-
work do have a physical clock, these clocks cannot be assumed to be synchronized
during the whole lifetime of the network. Modeling the whole network is therefore
one particular instance of the famous problem: how to model asynchrony in a syn-
chronous language?. The general framework has been studied a lot (see [16,4,7])
and consists in equipping each asynchronous process with an additional input that
plays the role of an activation condition for it. A specific global constraint on these
activations conditions represents one special form of asynchrony. No constraint at
all means pure asynchrony. A similar desynchronization mechanism is implemented
in Lussensor but we do not detail it in the sequel.

The model should describe what happens precisely in the communication medium,
i.e., the air in which the radio transmission occurs. We could even include electro-
magnetic perturbations, or other similar phenomena. All these modeling aspects
are grouped in a Lustre node called channel that knows about the topology of
the network. When a sensor emits something with its radio, this is modeled by
the corresponding Lustre node sending a signal to the channel node, which may
compute which of the other nodes will hear something, depending on their relative
positions, and possibly integrating perturbations of the channel.

Each sensor instance is structured into several components: the application
software; the routing protocol (usually software); the MAC protocol (could be soft-
ware or hardware, at least partially); energy models for all the significant pieces of
hardware (radio, CPU, memories, sensor, etc.).

The same principle is applied for all the energy models: we identify a (small) set
of discrete significant values for the energy consumption of the device, corresponding
to its well-identified running modes. Then we list all the possible mode changes.
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Physically, these transitions between modes may take some time and energy too.
For instance, switching the radio from sleeping to emitting mode has a cost, in both
time and energy. We decide to encode all this phenomena into usual automata:
spending time and energy is associated with states, the transitions are instantaneous
and consume nothing. This means that we add some fictitious “states” to model
the time and consumption of physical mode changes. Once these automata have
been designed, the encoding into Lustre is very systematic.

Exploiting the various energy modes of hardware devices may be done in several
ways. Our global model should provide a way to model any solution. Conse-
quently, we provide a coordination between the model component that represents
the application code, and the energy models of the CPU and the memory (see also
section 4.3).

4 The Model Details

We then describe the components of the model in more details. The hierarchic
structure of the Lustre part is described below. For each element we list the inputs
and then the outputs, between parentheses. All these communications between the
elements are signals, or flows, in the sense of Lustre, i.e., sequences of values over
time. Technically, the node channel is the main node of the Lustre model, and
its code contains the many instantiations of the sensor node.

The channel (sensor values, random data) (array of energies spent) =
• The sensor nodes 1, 2, ... N .

Each node (sensor value, random data, radio inputs) (energy spent)
=
· Application (sensor value)

(commands for Sensor, CPU, RAM, Flash energy models)
· Routing

(requests from appli, info from MAC) (requests to MAC, info
to appli)

· MAC (random data, radio input, requests from routing)
(radio output, info to routing)

· Sensor, CPU, RAM, Flash energy models
(commands from appli) (energy spent)

· Summation of the energies spent in this node
• The sink node (radio input)
• Summation of the energies spent since the beginning, for each node
• The data structures for the topology and state of the channel

4.1 Hardware Components

The energy models of the hardware parts are small automata, that can be encoded
systematically into Lustre. The general form of the Lustre encoding can be
observed on the partial model of the RAM given in Figure 2. Such a component
outputs the current energy, i.e., the energy spent during one instant of the basic
clock. Some other components will gather all these values and sum them to compute

6
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node RAM (mode_change: i n t ) r e t u r n s (energy: r e a l );
var current_mode: i n t ;
l e t

-- Encoding of the transitions
current_mode = RAM_MODE_OPERATE ->

i f mode_change = MODE_DONTCHANGE
then pre(current_mode)
e l s e i f mode_change = RAM_MODE_OPERATE

then RAM_MODE_OPERATE
e l s e ...

-- Computation of the energy spent
energy = i f current_mode = RAM_MODE_OPERATE

then RAM_POWER_OPERATE
e l s e i f current_mode = RAM_MODE_STANDBY
then RAM_POWER_STANDBY
e l s e ...

t e l
-- somewhere else in the global model , summation of
-- the ‘‘instantaneous ’’ energy values computed by RAM:
sum = 0.0 -> RAM (...) + pre (sum) ;

Fig. 2. Example Lustre encoding for an automaton modeling energy consumption (all the capitalized words
are constants).

the global consumption of the network. The input is a mode change request, given
as the identity of the mode to reach. These components will be connected to other
parts of the global model, in which the decisions for changing modes can be taken
(for instance in the application software, see section 4.3).

The state is encoded by an integer or by a vector of Boolean values, depending
on what we want to do with the model. For simulation purposes, it is better to use
an int, but for validation purposes it is usually better to exhibit Boolean encodings
wherever it is possible (because the exploration of the model becomes decidable).
The transformation between the two forms can be done automatically in Lustre.

4.1.1 RAM and Flash Memory
The RAM memory usually has 4 modes, and not all mode-changes are possible. The
modes are: Off, Idle (the memory can be read and written to normally), Standby
(the memory cannot be read nor written to; its consumption is low; it takes some
time to put the memory in idle mode) and Deep-standby (same behavior as the
previous one,it consumes even less, and it takes more time to put the memory in
idle mode).

In the model of Figure 3, for sake of simplicity, we did not model the time needed
to switch between modes, because of its very small order of magnitude, compared
to other times in the global model. But it could be done easily (see the principle
on the radio model). The consumptions to be attached to the states are taken from
the documentation of the STMicroelectronics SRAM DS2016.

For the Flash memory (Fig. 4), it is even simpler, because it will be used to
store the program to be loaded. It does not need to be written to. The modes are:
Standby and read. The consumptions are taken from the documentation of the
SGS-THOMSON M28F256.

4.1.2 The CPU and the Sensor
The model of the CPU (Fig. 5) is a simple DVS model, corresponding to most
existing DVS mechanisms. The model of the sensor (Fig. 6) is included in our
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Fig. 3. Model of the RAM

OFF Standby

Read

Fig. 4. Model of the Flash

OFF (DVS0) DVS1

DVS2FULL (DVS3)

Fig. 5. The Model of the CPU

IdleOFF

Acquire

Fig. 6. Model of the Sensor

model because we suspect that intelligent sensors have several energy modes, but
we did not find appropriate documentation yet. Anyway, a sensor could have at
least two modes, depending on the fact that it is activated or not. This is reflected
in the simple model given here, and could be enriched to take into account a more
accurate sensor documentation.

4.1.3 The Radio
The radio (Fig. 7) is the most interesting energy model. The modes are: Off, Idle,
Hibernate, Transmit, Doze and Receive, depending on the activity of the radio.
The states denoted with dashed lines do not correspond to these modes, but they are
added in order to be able to attach all timing and energy consumption information
to states, whereas all the transitions are instantaneous and consume nothing. In the
Lustre encoding, all the 10 states are represented. The information to be attached
to the states is taken from the documentation of the Freescale MC13192, which
implements the 802.15.4 norm.

4.2 Protocol Layers

In this paper we consider that the protocol layers are implemented in software. In
order to include them in our global model, with the appropriate level of detail,
we need to consider their object code. Indeed, when some software element drives

8
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OFF

Hibernate Doze

Idle

Transmit Receive

Doze_To_IdleHibernate_To_Idle

Idle_To_Transmit Idle_To_Receive

Fig. 7. Model of the Radio

the energy-saving mechanisms of the hardware, it is visible at the granularity level
of the machine instructions. An assembly-line code can be easily described by an
automaton (the control graph of the program), and that is what we do here. The
automaton is then encoded into Lustre.

In order to give an idea of the levels of details that need to be modeled, we give
a brief description of the MAC and routing algorithms included in Lussensor.

4.2.1 Medium Access Control
The MAC protocol implemented in Lussensor is a preamble MAC protocol (see, for
instance, WiseMAC [6]). Each node periodically checks whether the channel is free.
If the channel is busy, the node will let its radio on to get the packet that follows the
preamble. Otherwise, it goes back to sleep mode.To avoid collisions we implement
a back-off: the sender has to wait for a random time before emitting anything, then
it scans the channel and if the channel is clear (Clear Channel Assessment, CCA),
it sends the preamble and then the message. Otherwise, it delays the emission by
setting a timer at random between 0 and cwmax. A preamble precedes each data
packet for alerting the receiving node. All nodes in the network sample the medium
with a common period.

The control automaton corresponding to this algorithm has 10 states. The Lus-

tre encoding of this component will be connected to the component representing
the application code, and to the component representing the channel. It also re-
ceives a random int value from the outside (see comment in section 3.1). For
the connection to the channel, we model the radio phenomena by a pair (signal,
packet data), where packet data encodes the data transmitted (a Lustre array
of ints) and signal is a value (int or Bool encoding the elements of the set:
{ RF SIGNAL NONE, RF SIGNAL PREAMBLE,
RF SIGNAL PACKET, RF SIGNAL COLLISION }.
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node MAC (
-- to be left as a global input of the model:
random_mac: i n t ;
-- From application code
start_mac: boo l ;
want_to_transmit: boo l ; -- the appl. wants to transmit a packet
packet_to_transmit: useful_packet_data; -- data to be trans.
-- From channel
rfin_signal: i n t ; -- type of the signal received on the radio
rfin_packet_data: packet_data -- data received

) r e t u r n s (
energy: r e a l ;
-- To application code
busy: boo l ; -- the MAC is busy , cannot transmit now
packet_received: boo l ; -- MAC has received a packet
packet_transmitted: boo l ; -- MAC has transmitted a packet
received_data: useful_packet_data; -- the packet received
-- To Channel
rfout_signal: i n t ; -- type of the signal emitted on the radio
rfout_packet_data: packet_data; -- data emitted );

Fig. 8. Interface of the MAC component

This represents the fact that, from the point of view of the MAC, the radio is able
to give the following information: either there is no signal, or there is a signal cor-
responding to a preamble, or there is a signal corresponding to a packet, or there is
something that cannot be interpreted, meaning there is a collision. As an example,
the interface of the Lustre node for the MAC is given by Figure 8.

4.2.2 Routing
The routing protocol included in Lussensor is the two-phase directed diffusion de-
scribed in [9]. The sink first broadcasts an “interest” message to the whole network.
The request can be ”send the temperature once an hour”, or ”if the temperature in-
creases sharply, send a message” . This interest message is sent using a flooding
routing mechanism: each node retransmits all the packets it receives except the
ones it has already forwarded. When a node receives an interest, it checks whether
it is concerned by the request and then forwards the packet. It will always send the
values through the route that was used to reach it from the sink. The algorithm is
encoded into an automaton, and then in Lustre.

4.3 The Application code and the Model of the Channel

The application code is a simple algorithm that emits the value sensed on a regular
basis. It has 8 control states, and computes the commands mode sensor, mode cpu,
mode flash and mode ram to be connected to the corresponding inputs of the hard-
ware device models. For the moment, the values of these commands are entirely
defined by the control state. The effect of any static analysis that would insert such
commands in the object code of the application can be easily included in our model.

In Lussensor, the channel is the part of the global model that takes care of
the air where communications take place, and knows about the topology of the
network. The corresponding Lustre node channel computes which nodes receive
a correct signal, which nodes are jammed, etc. It is quite complex because the main
algorithms involved are iterative algorithms on matrices, which have to be encoded
into the Lustre-V4 array operators (originally defined for circuit design, and based
on static recursion, see [22]). But there is no intrinsic difficulty here.
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5 Related Work

The first category of “virtual prototyping” approaches corresponds to the definition
of formal models for performance analysis. These models are usually quite simple,
and this is the reason why they are used mainly to compare protocols on one link.
Since Kleinrock and Tobagi [12], they have been used extensively for the evaluation
of MAC protocols. However, they cannot be used to compare complete protocol
stacks.

All other virtual prototyping approaches are developed in order to include some
description of the network behavior in the model. This gives more complex models,
of course, for which there is no simple set of equations that could be solved. These
models may be used for simulation, but we can also hope to use then for formal
validation, if they are described in well-defined languages or formalisms.

Because network simulators are extensively used in the network community re-
search, many relevant simulators have been developed. NS-2 [1] is a packet-level
simulator that was first designed for wired networks. NS-2 is a discrete event simu-
lator. The interest of having one single simulator is to enable comparisons between
different protocols without the need to implement the protocol we want to compare
with. Indeed, NS offers a large protocol library. However, NS is not really scalable:
it is convenient for simulating a few hundred nodes only. Because one of the key
issues in sensor networks is power consumption, people began to develop simulators
that take the energy consumption into account.

Avrora [26] is written in Java and is cycle-accurate. It is able to execute the
binary code of an application. The efficiency of the simulation relies on a quite
complex synchronization pattern which in fact constitutes the model of the radio.
For the environment, models are still needed, and the interaction between a model of
some component and the exact description of another component is not formalized.
It would be hard to use this framework to play with various abstractions.

Atemu [21] executes binary code and synchronizes the nodes on the clock cycle
of the processor. Fine grain properties can be obtained up to 120 nodes. To our
opinion, simulating the hardware at this level of detail is probably hopeless.

TOSSIM [17] is the simulator dedicated to TinyOS [25] applications. TOSSIM
does not provide a model of the consumption. To overcome this limitation, it has
been extended with PowerTOSSIM [24]. In PowerTOSSIM, each state of the CPU,
Radio and EEPROM is associated with a cost. Running the simulator computes
the energy consumption of each node.

AEON [13] proposes to build an energy model by running a real network, and
then to include this model in a simulator like AVRORA, to do some profiling. AEON
allows to observe the impact of the energy management primitives of TinyOS.

None of these simulators uses a formal model that could be used for validation.
On the other hand, the formal validation community does not seem to have

started working specifically on sensor networks. To our knowledge, there is no
other approach for the formal and global modeling of sensor networks, for which
we can hope to use validation tools. Some experiments in modeling and analyzing
sensor networks have been made with tools like HyTech [8] or Uppaal [14], but the
models are still very abstract.
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6 Current Uses of the Model

6.1 Validation by Simulations

The model has been developed progressively, and each component tested before
integration. The complete model has been simulated with the Lustre interpreter,
but it is quite slow (even for a small number of sensors, typically 10), and the
graphical interface is poor, compared with what we can do in ReactiveML. The
intended use is as follows: for any energy-related property one would want to observe
on the model, design a Lustre observer (a special node that may read all the values
of the input, output and local variables, but has no effect on the behavior) that
outputs numbers; compile the Lustre model together with the observer; connect
the code to the environment model in Lucky (this part generates values for the
sensors, and also the random values needed by the protocol parts); run this a large
number of times, storing the outputs; draw curves from the output sequences.

This method makes the Lustre model comparable to tools like ns2. We are
currently investigating the “observer” version of the main quantitative evaluations
usually found in the papers of the network community.

6.2 Uses of Lucky models

Lucky [10,11] belongs to the Lustre toolbox. It allows to describe non-deterministic
reactive behaviors as sets of parallel communicating automata with weights repre-
senting probabilities. A Lucky component may be used in our global model to
replace any of the Lustre components, provided it has the same input/output
interface.

The first use of Lucky is to model the physical environment, i.e., the non-
deterministic process that generates spatially and temporally correlated stimuli for
the sensors. This is the same approach as in [23].

The next thing we will do is to use Lucky to model perturbations in the channel
(shadowing, fading, path-loss). We’ll have to encode in Lucky the accurate prob-
abilistic modelings that have been proposed for these phenomena in the network
community. The Lustre model is an appropriate platform for these experiments.

A similar use of Lucky would be to replace a part of the network (a subset of
the nodes) by a traffic generator, i.e., a non-deterministic process that generates
the states of the channel for the remaining nodes. This is related to the next point,
since it is a way of abstracting the global model.

6.3 Modular Abstractions and Formal Analyzes

As mentioned in the introduction, analyzing formal models of sensor networks means
we are able to perform quite drastic abstractions, but these abstractions may depend
on the kind of property to be analyzed. We are interested in properties that talk
about the energy consumption, for instance: “is it possible to spend more than
energy E in less that time T?”. This is a safety property. The Lustre model
in which both time and energy are encoded into some numbers that behave as
counters may theoretically be fed into a verification tool that deals with numbers
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symbolically (abstract interpretation for instance). But the model for thousands of
nodes is huge.

We propose to use the Lustre model as a modular-abstraction framework.
The idea is the following: replacing a component C in a global model M by a
more abstract version C ′ should yield a new global model M ′ which is indeed more
abstract than M . This abstraction preservation property is essential when playing
with various abstractions of the individual components. We should also be able to
prove the property: C ′ is more abstract than C.

For the components modeling the energy consumption, the notion of abstraction
has to be defined precisely. In such a model C, the energy attached to a “state” is
in fact a worst-case estimation of the energy spent by unit of time while the system
is in this state. Such a model, reacting to an input sequence I, produces a sequence
of these “instantaneous” energies, than can be summed up. Let us note Σ(C, I)
the sum of the energy outputs produced when C reacts to I. A model C ′ is more
abstract than C iff: for all I, Σ(C, I) ≥ Σ(C ′, I). “More abstract” means that the
worst-case estimation is less precise, hence greater.

We are currently experimenting various abstract-interpretation tools to help
verify automatically that an energy model C ′ is more abstract than a model C. The
case study is the model of the radio (see Figure 7), for which various approximations
can be derived.

7 Conclusions and Perspectives

We have designed the architecture of a global and accurate model of sensor networks,
in Lustre. All the elements are taken into account, except the operating system.
We could have included one more component for the OS without difficulty, but
a lot of WSN solutions are considering static scheduling instead of using an OS,
which is probably a good choice for energy consumption. Hence the “application”
component of our model is sufficient. The software parts may be included at the
level of detail of machine instructions, which gives a fine-grain modeling of energy
consumption. Any hardware device can be modeled by a dedicated energy-model,
as we did for the radio, the CPU, the memories, and the sensor. The values taken
form the data-sheets of current technology devices can be directly included in our
models.

We think that our model is as precise as the cycle-accurate models obtained
with tools like Avrora or Atemu (see related work). Lussensor is not intended for
debug simulations (it does not provide graphical outputs), but the compiled code
may be used for batch simulations. Moreover, we think that Lussensor has several
other important qualities:

• Lussensor is a modular model that may serve as a common platform for
several abstractions. Moreover, the various abstractions can be compared,
thanks to the abstraction partial order on the energy components, as described
above.

• Adding observers to compute quantitative measures of the network behavior is
very easy

• Lustre being a declarative language, the global model is essentially a set of
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Boolean and numerical equations, for which we can hope to use a large set of
symbolic verification tools.

• The Lussensor platform may be used to include existing probabilistic models
as components, if we are able to describe them in Lucky.

Lussensor is a first step, for which the main perspectives are the following.
First, we will use Lussensor as a case-study for our “modular worst-case energy
models” approach; second, we will investigate the combined use of Lucky and
Lussensor to design performance models of sensor networks that contain some
details on the behavior of the computing parts. Indeed, as mentioned in section 5,
the mathematical models used for the performance evaluation of protocols are too
simple when it comes to representing complete protocol stacks or complex radio
channel behaviors (i.e., collisions).
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Abstract

Mutation analysis is usually used to provide indication of the fault detection ability
of a test set. It is mainly used for unit testing evaluation. This paper describes
mutation analysis principles and their adaptation to the Lustre programming lan-
guage. Alien-V, a mutation tool for Lustre is presented. Lesar model-checker is
used for eliminating equivalent mutant. A first experimentation to evaluate Lutess

testing tool is summarized.

Key words: Mutation analysis, data-flow programming language,
Lustre, test, Lesar, Lutess.

1 Introduction

In recent years, software quality assurance has received growing attention

since it is recognized that a high level of quality is necessary to make both

the client and the supplier confident in the product, and to reduce the main-

tenance costs. Testing is the most used technique for checking whether the

required quality has been achieved. The testing purpose is to uncover the

largest possible number of faults which have crept into the product during the

construction stages. Due to the increasing complexity of software, the testing

efficiency/quality has to be controlled.

During the last decade, the growing interest in synchronous languages from

large companies has initiated significant contributions to the practical valida-

tion problem of synchronous software. Contrary to many other areas, and

thanks to the rigorous mathematical semantics of this approach, much of cur-

rent synchronous software testing theory and practice is not built on wishful

thinking: several specification-based testing methods have been designed, im-

plemented and have shown to be effective at revealing errors [13,33,21,4,24].
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Furthermore, all these methods allow to automate the test data generation

process.

In this context, our previous works on testing concerned validation of Lus-

tre programs. For this purpose, we have elaborated and we are currently im-

proving Lutess a testing tool dedicated to synchronous programs [13,32,35].

Lutess produces randomly and dynamically test sequences. A natural ques-

tion is then to evaluate the “quality” of the test data produced.

Mutation analysis has been introduced by De Millo in 1978 [11]. Its main

purpose is to evaluate the quality/adequacy of a test set with respect to a fault

model. It is mainly used for unit testing evaluation. The original work con-

cerns Fortran programs. Since 1978, mutation analysis has been widespread,

improved and evaluated [10,28,15,23,34,36]. Briand et al. have demonstrated

that mutants can provide a good indication of the fault detection ability of a

test suite [3].

In the following, section 2 details mutation analysis. Sect. 3 describes

the adaptation of mutation operator for Lustre and introduces our mutation

tool. Sect. 4 deals with equivalent mutant detection using the Lesar model-

checker. Sect. 5 describes a first evaluation of Lutess testing tool. Sect. 6

concludes and draws some perspectives.

2 Mutation analysis

2.1 Principles

Mutation analysis consists in introducing a small syntactic change in the

source code of a program in order to produce a mutant [11] (for instance,

replacing one operator by another or altering the value of a constant). Then

the mutant behavior is compared to the original program. If a difference can

be observed, then the mutant is marked as killed. If the mutant has exactly

the same observable behavior as the original program, it is equivalent.

The original aim of the mutation analysis is the evaluation of a test set.

To do that, one has to produce all mutants corresponding to a predefined

fault model. If the test set can kill all non-equivalent mutants, the test set is

declared mutation-adequate. This means that the tests are able to discriminate

the behavior of all faulty programs from the original program.

Adequacy of the test set is evaluated thanks to the mutation score (also

called adequacy score). The mutation score is the percentage of non-equivalent

mutants killed. For a program P , let MT be the total number of mutant

produced with respect to a particular fault model F . Let ME and MK be the

number of equivalent and killed mutants. The mutation score of the test set

T with respect to the fault model F is defined as:

MS(P, T, F ) =
MK

MT − ME

2
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A test set is mutation-adequate if the mutation score is equals to 1 2 . Briand et

al. have demonstrated that mutation analysis can provide a good indication

of the fault detection ability of a test suite [3].

Mutation analysis relies on two assumptions. The first one is called the

programmer competent hypothesis. It assumes that the programs are “nearly

correct”, that is to say, mostly correct with possibly simple faults. The second

assumption is the coupling assumption. It assumes that a test set covering

simple faults is able to detect more complex ones.

2.2 Tools for mutation

Mutation analysis is usually used to evaluate the adequacy of test data set

produced during unit testing. It has been adapted for several programming

languages, and lots of tools have been proposed [36]. For instance, Mothra

tool supports Fortran 77 and ADA [10,31]. MuJava [23] and JMutator 3 are

tools for Java. C-Patrol system is for C [1], NMutator for C#3, Alien for

VHDL [26]. Mutation analysis was also applied to Lustre [25], Petri-Nets,

Final State Machine (FSM), Statecharts, and Estelle [17,16,15,12].

2.3 Mutation operators

The key of mutation analysis is the fault model. Fault model is expressed as a

set of mutation operators. The original mutation operator set was proposed for

Fortran 77. It was derived from studies of programmer errors. This mutation

operator set has been refined during more than 15 years [10,28]. It is given

Table 1.

Twenty-two operators were defined. Those operators were classified into

eight classes and three levels (SAL, PDA and CCA) [10]. Statement AnaL-

ysis (SAL) replace each statement by a TRAP 4 , by a CONTINUE or by a

RETURN (for subprogram). It also replaces the (target) label in each GOTO

and each DO statement.

The Predicate and Domain Analysis (PDA) takes the absolute value or

the absolute negative value of an expression. It replaces one arithmetic/rela-

tional/logical operator by another, inserts a unary operator preceding an ex-

pression, alters a value of a constant or alter a DATA statement.

Coincidental Correctness Analysis (CCA) replaces a scalar variable, an

array reference or a constant by another scalar variable, array reference or

constant. It also replaces a reference to an array name by a reference of

another array name.

2 Mutation testing aims at producing tests until the maximal mutation score is obtained.
3 http://www.inria.fr/rapportsactivite/RA2002/triskell/module7.html
4 executing the TRAP will kill the mutant.

3
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Mutation operator Description Levels

AAR array reference for array reference replacement CCA

ABS absolute value insertion PDA

ACR array reference for constant replacement CCA

AOR arithmetic operator replacement PDA

ASR array reference for scalar variable replacement CCA

CAR constant for array reference replacement CCA

CNR comparable array name replacement CCA

CRP constant replacement PDA

CSR constant for scalar variable replacement CCA

DER DO statement end replacement SAL

DSA DATA statement alteration PDA

GLR GOTO label replacement SAL

LCR logical connector replacement PDA

ROR relational connector replacement PDA

RSR RETURN statement replacement SAL

SAN statement analysis (replacement by TRAP) SAL

SAR scalar variable for array reference replacement CCA

SCR scalar for constant replacement CCA

SDL statement deletion SAL

SRC source constant replacement CCA

SVR scalar variable replacement CCA

UOI unary operator insertion PDA

Table 1
Mutation operator types for Fortran 77

2.4 Weaknesses of mutation analysis

Beyond the relevance of the mutation operators, the two main weaknesses of

mutation analysis are (1) the cost and (2) equivalence decision.

Mutation cost

Mutation analysis is generally very expensive: lots of mutants are pro-

duced. Time is required to execute them in order to kill them. The number of

mutant produced depends on the fault model and the program. Budd found

that the number of mutants is roughly proportional to the number of refer-

ence times the number of data objects [8]. Acree et al estimate the number of

mutants to be on the order of the square of the number of source lines [2].

Two main strategies have been proposed to reduce this cost: weak and se-

4
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lective mutation. Weak mutation consists in comparing internal states (instead

of outputs) of both program and mutant in order to detect differences. The

observation can be done after the execution of the faulty expression, instruc-

tion, basic block and program. Weak mutation testing requires to produce

less test that classical (strong) mutation.

N-selective mutation is mutation omitting the N most productive mutation

operators. In [30], 2-selective was defined by omitting SVR (scalar variable

replacement) and ASR (array reference for scalar variable replacement) oper-

ators. 4-selective mutation also omits CSR (scalar for constant replacement)

and SCR (scalar for constant replacement).

Equivalence decision

A mutant which has exactly the same behavior as the original program is

considered to be equivalent to the orignal program. Deciding if a mutant is

equivalent to the program is an important step before computing the mutation

score. Otherwise, it would not be possible to reach a mutation score of 1.

At the beginning of mutation analyis, equivalence decision was a complete

manual process. It has been proved that “in general there cannot be a com-

plete algorithmic solution to the equivalence problem” [27]. However, some

works have been done to detect equivalent mutants automatically as much as

possible. For instant, compiling technics or domain-constraints analysis were

used [27,29], but they detect only a part of equivalent mutant set.

3 Applying mutation analysis to Lustre

3.1 Brief presentation of Lustre language

Lustre [18] is a synchronous declarative data flow language. The synchronous

hypothesis considers the program reaction time to be negligible with respect

to the reaction time of its environment.

The synchronous data flow approach consists in presenting a temporal

dimension into the data flow model. A flow or stream (basic entity) includes

two parts: a sequence of values of a given type, and a clock representing a

sequence of instants (on the discrete temporal scale).

A Lustre description, structured in a network of nodes, represents the

relations between the inputs and the outputs of a system. These relations are

expressed by means of operators (nodes or basic operators), of intermediate

variables and of constants.

A node is defined by a set of equations. Any local variable or output must

be defined by one and only one equation. The equations can be written in

any order without changing the behavior of the program.

Lustre offers usual arithmetic, boolean and conditional operators and two

specific operators: pre, the “previous” operator, and −> the “followed-by”

5
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node chrono (raz : bool)

returns (n : int);

let

n = 0 -> if raz then 0 else ( pre(n) + 1 ) ;

tel;

Fig. 1. A simple Lustre program

operator 5 . Fig. 1 gives a Lustre program implementing a simple stopwatch

(chronometer). The output n is set to 0 at the first step or when the raz input

is true. It is incremented by one otherwise: the value of n at the current top

is equal to the value of n at the previous top (pre n) plus one. Current and

When are two other temporal specific operators of Lustre used for sampling

signals.

3.2 Fault model

Mutation operators proposed for Fortran, Java or C are not completly re-

usable for Lustre, since it is a data-flow language. A first step of our work

was to select a subset mutation operators that was compatible with Lustre

language specificities. As we mentioned Sect. 2.3, mutation operators are clas-

sified into three groups: statement analysis (SAL), predicate analysis (PDA),

coincidental correctness (CCA).

All operators from the class CCA were selected, except those dealing with

array reference. In dataflow languages, and especially in Lustre, arrays are

much more than a data structure. They are a powerfull way of constructing

programs and define regular networks [6]. Simple syntactic change in the array

reference usually produce an incorrect Lustre program. This is due the fact

that Lustre is a strongly type language. For instance, let us consider the

example given Fig. 2. In this node, the input and the output are two arrays of

integers. The equation states that for (i=0 to 5, b[i]=a[i]+1). For this

equation, replacing an array reference by a constant (in (b or a)) or modifing

the size of one tabular will lead to an error.

node example(a : int^6) -- array of integers

returns (b : int^6 );

let

b[0..5] = a[0..5] + 1^6 ;

tel;

Fig. 2. An other Lustre program (with arrays)

All mutation operators of the PDA type except DSA were selected. Indeed

Data Statement Alteration (DSA) can not directly be applied for Lustre,

5 Let E and F be two expressions of the same type denoting the sequences (e0, e1, ..., en...)
and (f0, f1, ..., fn, ...); pre(E) denotes the sequence (nil, e0, e1, ..., en−1...) where nil is an
undefined value. E −> F denotes the sequence (e0, f1, ..., fn...).

6
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since there is no data statement. In node given Fig 1, Arithmetic Operator

Replacement (AOR) would replace + by -. The specific Lustre operator pre

is considered for Unary Operator Insertion (UOI).

No SAL operators were selected. A Lustre node is a set of equations

which can be written in any order. Since there should be exactly one equation

for each output and local variable, it is not possible to delete a statement

(SDL mutation operator). Moreover, Lustre has no DO, GOTO and RE-

TURN statement (or similar ones). So related mutation operators (DER,

DSA, GLR and RSR) have no sense here.

Lustre language has four specific temporal operators (pre, followed-by,

current and when). As said previously, the operator pre is considered for UOI

mutation operator. For followed-by, current and when opertaors, we are

currently searching adequate mutation operator. However, thanks to “clas-

sical” mutation operators (changes in variables, constants and non-temporal

operators), it is possible to alterate the behavior of sequential programs. For

instance, for node chrono, it is possible to replace the variable raz or the

constants 0 or 1, which will modify the behavior of chrono.

3.3 Mutation tool for Lustre

Alien-V 6 is a tool we built for mutating Lustre nodes. This tool was pro-

duced within a collaboration between LSR (team VASCO) and LCIS (team

VALSYS). The multi-language mutant generator for VHDL and C developped

by LCIS (Alien) [26] was extended to Lustre.

The mutation analysis is mainly a lexical process, since it is a multi-

language tool. A mutation operator table is an input of the tool. It is possible

to adapt this table to define specific mutation operators. For the moment, only

AOR, LOR, and ROR are defined by default (Arithmetic/Logical/Relational

Operator Replacement). CSR (Constant for Scalar variable Replacement) and

SCR (Scalar for Constant Replacement) have to be manually parameterized

for each program.

Some work is currently undertaken to improve Alien-V. We have used our

mutation tool on several examples:

• an Air-conditionner controller system (Conditionner) specified in [5], and

described in Lustre in [22],

• a subway U-turn section (UMS) [19],

• a simplified monitoring of accelerometer sensors (Monitoring) [7],

• a water supplying system (Supplying) [14]

• four examples of 8-integer sorting applications (Sorting)

• a lift system [32].

6 Lustre also means “5 years long” in French.

7
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Program # lexemes # node # operands # operators # mutants

Conditionner 61 1 30 20 32

UMS 66 1 32 18 16

Sorting 1 184 3 127 15 5

Sorting 2 369 1 221 104 100

Sorting 3 489 1 289 140 140

Sorting 4 932 1 562 343 924

Monitoring 268 6 86 111 3

Supplying 555 8 296 126 68

Lift 905 5 421 259 220

Table 2
Quantitative elements about mutated programs

’Π

Π

Assert A

B
verdict

Fig. 3. Verification program structure

We have selected those 9 programs since they present different proper-

ties. Sorting programs are combinatorial examples. Conditionner and UMS

are simple sequential boolean one-node programs. Monitoring is a simple se-

quential boolean program calling library nodes. Supplying is a more complex

sequential boolean program, and Lift is a more complex boolean program

which uses arrays. Most of these programs were provided with environment

descriptions and safety properties.

Table 2 presents some quantitative elements about those examples and

the results of the mutation analysis. As it can be noticed, mutation analysis

for Lustre programs produces proportionnally less mutants than mutation

analysis for imperative programming languages (see Sect. 2.4).

4 Detecting equivalent mutants

4.1 Lesar: a model-checker for Lustre

Lesar [19,20] is a model-checker for Lustre. It can be used to prove the

correctness of a Lustre program with respect to some safety properties or to

compare two programs.

As input, Lesar need a verification program [19]. A verification program

is a specific Lustre program Π′ built out of three elements (fig. 3):

8
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• a program Π to be verified,

• a property P expressed by a boolean expression B which should be invari-

ably true,

• some assumptions on the environment (environment constraints); those as-

sumptions are boolean expressions (A) which can be assumed to be always

true.

The verification is performed on a finite state abstraction Π′′ of the pro-

gram Π′. The verification principle is the following: proving that Π′′ holds is

equivalent to enumerating its finite set of states, checking that in each state

(belonging to a path starting from initial state and on which the assertions are

always true) and for each input vector, Π′′ output evaluates to true. Lesar

was originally a boolean tool. A special algorithm has been added into Lesar

in order to treat contraints on numerical values.

4.2 Applying Lesar for detecting equivalent mutant

As previously said, mutation analysis can generate mutants equivalent to the

initial program. It is the case when both mutant and original program have

always the same observable behavior. Eliminating equivalent mutants is re-

quired, otherwise a maximal mutation score can not be reached.

node VerifPgm(in_0,..,in_n ) --inputs

returns (ok: bool);

var outo_0,..,outo_m -- output for the original node

outm_0,..,outm_m -- output for the mutant

let

(outo_0,..,outo_m) = original_node(in_0,..,in_n );

(outm_0,..,outm_m) = mutant(in_0,..,in_n );

-- property to be checked

ok = (outo_0=outm_0) and ... and (outo_m=outm_m);

tel;

Fig. 4. A verification program to detect mutant equivalence

Lesar can be used to detect equivalent mutants produced for a Lustre

program. To do that, one has to construct a verification program that is

the comparison of the mutant and original programs, as it is done Fig. 4.

When some environment description is provided with the original program, it

is possible to consider the mutant-equivalency with respect to the environment

description (using the assert operator) or without considering environment

(unconditionnal mutant-equivalency ).

We have applied Lesar to detect equivalent mutants for our 9 exam-

ples (see sect. §3.3). Although we generally have the environment descrip-

tions for these examples, we wanted to demonstrate unconditionnal mutant-

equivalency.

9
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Program # mutants # eq. mutants

Conditionner 32 2

UMS 16 0

Sorting 1 5 -

Sorting 2 100 -

Sorting 3 140 -

Sorting 4 924 -

Supplying 68 15

Lift 220 0

Table 3
Mutant and equivalency

Lesar was very quick to detect equivalent mutants for Conditionner,

UMS, Monitoring and Supplying. However, Lesar does not provide any re-

sult for the four 8-integer Sorting examples. We initially thought it was due

to integer values. However, it was not possible to detect equivalent mutants

with 8-boolean Sorting programs (same programs, with boolean inputs and

outputs and same mutants produced). Lift program is composed of 5 nodes

(one main node calling once time each of the four other nodes). Mutation

analysis was done on each node. It was possible to detect equivalent mutant

considering each node separatly.

5 Evaluating test data

As said in the introduction, mutation analysis was proposed to evaluate the

quality/adequacy of a test set. So, to evaluate Alien-V, we wanted to evaluate

test data produced by our testing tool Lutess. In the first part of this section,

we briefly present the testing tool, and then we describe a first experiment

using Alien-V to determine test data mutation-adequacy.

5.1 Lutess testing tool: an overview

Lutess [13,32] is a testing tool which we developed to validate reactive syn-

chronous software. It requires three elements: an environment description

written in Lustre (∆), a program under test (Σ) and an oracle (Ω) provid-

ing the program requirements (fig. 5). Lutess builds a random generator

from the environment description and constructs automatically a test harness

which links the generator, the program under test and the oracle. The pro-

gram under test and the oracle are both synchronous executable programs,

with boolean inputs and outputs. They can be supplied as Lustre programs.

10
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test

verdict
oracle

dynamically produced input data

program output

system underdescription
Environment

input data
generator

Communication link Object  provided by the user

collector
trace 

∆

Test harness

Σ

Ω

Fig. 5. Lutess

The test is operated on a single action-reaction cycle, driven by the gener-

ator. The generator randomly selects an input vector for the program under

test and sends it to this latter. The program under test reacts with an output

vector and feeds back the generator with it. The generator proceeds by pro-

ducing a new input vector and the cycle is repeated. The oracle observes the

program inputs and outputs, and determines whether the software specifica-

tion is violated. The testing process is stopped when the user-defined length

of the test sequence is reached.

Basically, the Lutess generator selection algorithm chooses a valid 7 input

vector in an equally probable way. In each environment state, any valid input

vector has the same probability to be selected. Lutess offers also various

facilities to guide the generation (with property or statistical descriptions)

and replay some test sequences (re-do) [13,22].

node OracleMutant(in_0,..,in_nn, outo_0,..,outo_m)

--inputs and outputs for the original node

returns (ok: bool);

var

outm_0,..,outm_m -- output for the mutant

let

(outm_0,..,outm_m) = mutant(in_0,..,in_n );

-- property to be checked

ok = (outo_0=outm_0) and ... and (outo_m=outm_m);

tel;

Fig. 6. A oracle program for Lutess to kill mutants

5.2 Test generation evaluation

To evaluate the mutation-adequacy of a test set, our general process is the fol-

lowing. On one hand, we produce one or several testing sequences with a tool

7 An input is valid if and only if it is complying with the environment description.

11
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Mu- set A set B set C set D

tant min avg max min avg max min avg max min avg max

15 663 719.97 776 667 727.90 834 2 17.73 63 0 8.87 121

31 678 735.07 813 3 10.83 25 93 399.70 936 6 256.97 727

32 1416 1477.33 1580 9 19.83 34 101 407.13 937 7 256.87 727

47 3568 3790.83 3958 2074 5122.97 7101 9618 9812.03 9930 9973 9990.43 9999

53 0 3.03 11 0 4.17 13 11 333.47 899 0 254.83 724

min/max are the minimum/maximum numbers of differences observed for one

sequence among the 30 of a set.

Avg is the sum of differences observed for the 30 sequences divided by 30.

Table 4
Some results for supplying example

(here Lutess). On the other hand, we produce “oracle” programs for Lutess

(one for each non-equivalent mutant). Such an oracle program takes as inputs

the original program inputs and outputs; it returns one boolean, which value

is false each step the considered mutant produces different outputs than the

original program (see Fig. 6). We then use the re-do function of Lutess,

which feeds an oracle program with inputs/outputs previously obtained with

the original program.

To carry out a first evaluation of Lutess, we focus on the Supplying exam-

ple. Four sets of data were produced with environment constraints: without

any guiding (A), with property guiding (B), with statistical guiding (C and

D). Each time, 30 sequences of 10000 steps were generated. For each set, all

mutants were killed. But not all test sequences killed every mutant. For some

mutants, there were some test-sequences for which we could not observed any

differences between the original program and the mutants.

For each set of data, we count how many steps a difference between the

mutant and the original program could be observed. It was then possible to

“compare” the sets of data (see Table 4). We call “mutant difficult to kill with

a method” mutant for which differences could be observed in less than 1% of

steps in average on the 30 sequences.

Mutants that are difficult to kill are usually those concerning “initial state”

or “limit situation”. Mutants difficult to kill are not the same in the different

test data sets. This suggests that the generation methods of Lutess produce

different types of data.

6 Conclusion and perspectives

Summary of the work

Mutation analysis aims at the evaluation of the adequacy of a test set with

respect to a fault model. To do that, one has to produce all mutants corre-

sponding to this fault model. If the test set can kill all non-equivalent mu-

tants, the test set is declared mutation-adequate. This means that the tests

12
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are able to discriminate the behavior of all faulty programs from the original

program. Mutation analysis has been introduced by DeMillo in 1978 for For-

tran 77 programs [11]. It has been widespread for different types of languages.

[10,28,15,23,34,36]; and Briand et al. have demonstrated that mutants can

provide a good indication of the fault detection ability of a test suite [3].

In this paper, we have adapted mutation analysis to Lustre programs.

Lustre is a synchronous data-flow language. The data-flow nature of this

language requires to adapt mutation operators that were originally proposed.

Alien-V, the tool we built for Lustre program is presented. It has been

experimented on 9 programs, from simple to more complex ones.

The main difficulty with mutation analysis is the detection of equivalent

mutants. Equivalent mutants have exactly the same observable behavior than

the original program. Eliminating equivalent mutant is required to obtain

a maximum mutation-score. Since Lustre is based on a solid mathematical

foundation, it is possible to construct proofs about the programs. For instance,

Lesar is a model-checker for Lustre. To detect equivalent mutants, we

have used Lesar. Unfortunately, it was not possible to kill mutants for some

programs dealing with integers.

Finally, we have used mutant produced by Alien-V to evaluate mutation-

adequacy of test data produced by Lutess our testing tool with different

guides. First results show that the fact that a mutant is “difficult” to kill

depends on the guides used for the generation. This means that Lutess

generation method is really influenced by the guides.

Perspectives for Alien-V

For the moment, the fault model we used is mainly a selection of mutation-

operator previously defined for imperative languages. We are currently defin-

ing adequate mutation operators for temporal Lustre operators (followed-by,

current and when).

Mutation analysis was initially defined to evaluate adequacy of test data

produced during unit-testing. Recently, some works have been proposed to

extend mutation analysis to evaluate data set produced during integration

testing [9]. A fault model specific to integration test evaluation was proposed.

In Lustre, programs are oftenly structured with several nodes. Integration

testing is therefore required. The next step for Alien-V is to define/adapt

mutation operators to integration testing as it is done in [9].

Using mutation for test data adequacy evaluation

A first experimentation has been done to evaluate the mutation-adequacy of

test data produced by Lutess. We would like to use mutation as a help to

decide the end of testing. Moreover, we want to evaluate the influence (1)

of the environment constraints and (2) of Lutess guiding methods on the

mutation-adequacy of test data.

13
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Eyrolles, 1998, 341 pp.

[15] Fabbri, S. C. P. F., J. C. Maldonado, M. E. Delamaro and P. C. Masiero,
Mutation Testing applied to Validate Specifications Based on Statecharts,
in: 10th International Symposium on Software Reliability Engineering, Boca
Radon, FL, USA, 1999.

[16] Fabbri, S. C. P. F., J. C. Maldonado, P. C. Masiero and M. E. Delamaro,
Proteum/fsm: A tool to support finite state machine validation based on

mutation testing., in: 19th International Conference of the Chilean Computer

Science Society (SCCC ’99) (1999), pp. 96–104.

[17] Fabbri, S. C. P. F., J. C. Maldonado, P. C. Masiero, M. E. Delamaro and W. E.
Wong, Mutation testing applied to validate specifications based on petri nets.,
in: Formal Description Techniques VIII, Proceedings of the IFIP TC6 Eighth

International Conference on Formal Description Techniques (FORTE), IFIP
Conference Proceedings 43 (1995), pp. 329–337.

[18] Halbwachs, N., P. Caspi, P. Raymond and D. Pilaud, Programmation et
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Abstract

This paper describes an extension to Lustre to support the analysis of globally asyn-
chronous, locally synchronous (GALS) architectures. This extension consists of con-
structs for directly specifying the timeout automata used to describe asynchronous
communication between processes represented by Lustre nodes. It is implemented
using an extensible language framework based on attribute grammars that allows
such extensions to be modularly defined so that they may be more easily composed
with other language extensions.
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1 Introduction

Synchronous languages [2] have been successfully used to describe and reason

about a wide variety of systems, including hardware design and synthesis [24],

embedded software control [2], and modeling and analysis of globally asyn-

chronous, locally synchronous (GALS) architectures [15]. These can be seen

as domain-specific languages that address the concurrency and synchronization

concerns of embedded systems and hardware at a high-level of abstraction.

The Lustre language [14], in particular, has been used in a wide range

of academic and industrial projects. To better suit specific communities, the

Lustre language has evolved into different dialects that further specialize the
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language. These dialects have evolved from a simple “kernel” language that

has been fairly stable throughout the development of Lustre. For example,

to better support safety-critical software development, activation conditions

(condact) and initialized delay (fby) constructs were added to the variant

of the language used by the SCADE toolset [11], and a richer type system

and modularity constructs have been proposed in Lustre v6. Other examples

include with expressions and array slicing and composition operators in Lustre

v4, case, TO and FROM expressions and support for generic types in the

SCADE textual syntax, and different packages for statecharts-like extensions

to the language [8,20]. In recent work [12], we have extended Lustre with

condition tables like those found in RSML−e [25], state variables for building

simple state machines, and a notion of events.

There are many more domain-specific features that would make Lustre

easier to use in new domains. For example, Lustre has been used for the

analysis [15] and code generation [5,6] of GALS architectures. Our interests

here are in using Lustre to specify and analyze (but not generate code from)

the behavior of GALS architectures. Previous explorations of this idea, such

as [15], assume that users manually construct a scheduler node and use it to

manage the clocks of all of the asynchronous processes in the model. However,

a scheduler could be automatically derived using a language extension, given

the rates and drift of the asynchronous processes in the model. To support

this process, we add to Lustre a timeout condact construct that defines the

behavior of an asynchronous process within the architecture as follows:

a, b = timeout condact(rate,min drift ,max drift , channel(x , y), init a, init b);

This construct (defined in Section 2) specifies that node channel representing

a periodic process within the architecture is to be executed every rate millisec-

onds subject to clock drift in the range min drift ..max drift . Like a condact

expression, if the node does not evaluate, then the result of the expression is

the value from the most recent evaluation, and before the first evaluation, the

values init a and init b are used. Using this construct, a scheduler (imple-

mented in the kernel Lustre language) can be automatically derived.

Extending a language using traditional techniques often requires a large

development and tooling effort. Thus, there has been much research in pro-

gramming languages communities on the development of techniques and tools

for implementing languages that reduce the costs associated with adding new

features to languages. There are (at least) two important criteria for exten-

sions to a language. First, the new language constructs should have the same

“look and feel” as the host language constructs. That is, they should support

the same type of error-checking, optimization, and translations as do the host

language constructs. Second, it should be possible to combine implementa-

tions of different extensions to the same host language to create a new language

which incorporates the constructs in both. Furthermore, such a composition

should require little or no implementation-level knowledge of the language

2
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extensions. When this second criteria (referred to as the “composability cri-

teria”) is not met, users may be forced to chose between incompatible dialects

of Lustre that individually have only some of the desired language constructs.

In previous work [28], we raised this issue of incompatible dialects and the

traditionally high cost of language development. We proposed an extensible

language framework for Lustre based on attribute grammars as a possible

alternative approach to language development that satisfies the two criteria

mentioned above. This approach is used to implement timeout automata as

language constructs in Lustre. The primary contributions of this paper are the

specification and implementation of timeout automata as first class language

constructs in Lustre. Section 2 describes the GALS approach to development

and defines the timeout automata construct. Section 3 describes some aspects

of the implementation of the timeout automata as a language extension in our

extensible languages approach. Section 4 discusses related work and concludes.

2 Timeout Automata and GALS architectures

2.1 GALS and Flight Guidance Synchronization Example

To illustrate our approach to the analysis of GALS architectures, we describe

the synchronization logic in a Flight Guidance System (FGS). The FGS com-

pares the measured state of the aircraft (position, speed, and attitude) to the

desired state and generates pitch and roll guidance commands to minimize

the difference between the measured and desired state. The FGS subsystem

accepts input about the aircraft’s state from several other subsystems and

computes the pitch and roll guidance commands provided to the autopilot.

The FGS system has two physical sides corresponding to the left and right

sides of the aircraft. These provide redundant implementations that commu-

nicate over a cross-channel bus. Normally, only one FGS instance (the pilot

flying side) is active, with the other FGS instance operating as a silent, hot

spare. A transfer switch button on the flight control panel (FCP) can be used

to toggle the pilot flying side. In some critical flight modes, both sides are

active and independently generate guidance values for the autopilot, so that

the autopilot can verify that they agree within a predefined tolerance value. 5

To make the example of this paper tractable, we restrict ourselves to a

simplified specification that deals only with the logic determining whether an

FGS instance is active. This example captures critical functionality for the

FGS, e.g., at least one side is active at all times, and illustrates some of the

communication and coordination problems that can occur in GALS systems.

In our analysis [21], we prove that this simplified model simulates the behavior

of the full FGS w.r.t. synchronization, thereby ensuring that the results proven

about the simplified specification also apply to the full specification.

5 A more detailed description of the FGS can be found in [21].
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Fig. 1. Two FGS Synchronization Architecture in Simulink

A graphical model of the system architecture is shown in Figure 1. The

system inputs are:

• the Transfer Switch input (1), which switches the pilot flying side,

• the Independent Mode inputs (2, 3), which are Boolean signals that deter-

mine whether each side believes it is in the independent mode of operation, 6

and

• the Clock inputs (4 – 7). Clocks are Boolean signals that enable the exe-

cution of the processes within the architecture. Treating the clock signals

as unconstrained inputs allows us to model GALS systems within a syn-

chronous paradigm [15]. By embedding this model inside a model that con-

strains the clocks, we can model a variety of different physical architectures

and reason about their behavior.

The system outputs are:

• the Active outputs, which are Boolean signals that describe whether each

side believes itself to be active, i.e., computing pitch and roll commands for

the autopilot, and

• the Pilot Flying outputs, which are Boolean signals that describe whether

each side believes itself to be the pilot flying side.

2.2 Timeout Automata

A timeout automaton is a mechanism for constraining the Boolean clocks of

processes to match a notion of real (calendar) time. As described in [9], the

6 As discussed in [21], in an actual system these are not inputs to the FGS but are instead
computed. However, the system synchronization properties do not depend on the details of
this computation.

4

SLA++P 2007 Preliminary Version 139



Gao, Whalen, Van Wyk

automata consists of a set of processes, each of which run at a certain rate.

A scheduler (also called an event list) stores the times at which each of the

processes will next execute. Evaluation of the system consists of advancing

time to the next instant in which a process (or processes) can execute. Given

a set of processes P , we assume that each process p ∈ P has an associated

rate rp, a time until next execution tp, and a Boolean clock signal cp, and that

there is a distinguished variable ci that records the increment of time since the

last instant. Then, given a state σ mapping identifiers to values, we generate

a new state σ′ as follows:

• σ′(ci) equals min(σ(tp)) where p ∈ P

• σ′(cp) is true iff σ′(ci) − σ(tp) = 0

• σ′(tp) equals rp if σ′(cp); otherwise σ′(ci) − σ(tp).

Each process “fires” (executes) when its clock signal cp is true. Time always

advances by some positive increment described by ci. If multiple processes

share the same value for tp and tp = ci, then they execute simultaneously

within the step. Clock drift between processes can be introduced to the model

by allowing the rate rp of each process to vary within some specified range.

In [9,3,4] this approach has been shown to be amenable to model-checking

using SMT-based solvers for interesting GALS problems. We have also used

it for system simulation and testing. The primary advantage of timeout au-

tomata for analysis that maximal time progress is made on each step (i.e.,

there are no “stuttering” steps in which the clock ticks but no other changes

occur), and each step consumes a varying amount of real time as described by

the clock increment ci.

In the Dual FGS example, we have used timeout automata to prove the

correctness of the synchronization logic between the two FGSs. Properties

proved include: (1) at least one FGS is always Active, and (2) at most one

FGS is the Pilot Flying side. Other properties of interest are described in [21].

The proofs follow the process described in [9].

2.3 Implementation of Timeout Automata In Lustre

Timeout automata can be described as an extension to Lustre with the addi-

tion of a new expression construct:

timeout condact(rate,min drift ,max drift , 〈node〉, 〈init vals〉);

This construct specifies that node node representing a periodic process within

the architecture is to be executed every rate milliseconds subject to clock

drift in the range min drift ..max drift . Like a condact expression, if the node

does not evaluate, then the result of the expression is the value from the

most recent evaluation, and before the first evaluation of the node, the initial

values init vals are used. It is assumed (and checked by the compiler) that

timeout condact expressions are not nested within other clocked expressions;

this matches the expectation within GALS systems in that the asynchrony

5
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occurs at the global level and synchronous clocking mechanisms are local to

one of the modeled processes.

In the Dual FGS model, the left and right FGSs run every 100 ms with a

+/- 1 ms drift and communications between the two FGSs requires 15 to 25

ms. The expression of this architecture in Lustre is shown in Figure 2.

type fgs_data = ... ; /* contains PF, Independent, and Ack data */

const lft_fgs_init = ... ; lr_init = ... ;

rht_fgs_init = ... ; rl_init = ... ;

node fgs ( other_fgs_in: fgs_data, ind_mode: bool,

transfer_switch: bool, init_pilot_flying: bool)

returns ( fgs_out: fgs_data ) ;

let ... tel ;

node channel ( channel_in: fgs_data)

returns ( channel_out: fgs_data ) ;

let ... tel ;

node main ( trans: bool, lft_ind_mode: bool, rht_ind_mode: bool )

returns ( lft_fgs_pilot: bool, lft_fgs_active: bool,

rht_fgs_pilot: bool, rht_fgs_active: bool ) ;

var

lft_fgs_out: fgs_data ; lr_chan_out: fgs_data ;

rht_fgs_out: fgs_data ; rl_chan_out: fgs_data ;

let

(1) lft_fgs_out = timeout_condact(100.0, -1.0, 1.0,

fgs(rl_chan_out, trans, lft_ind_mode , true),

lft_fgs_init) ;

(2) lr_chan_out = timeout_condact(20.0, -5.0, 5.0,

channel(lft_fgs_out),lr_init);

(3) rht_fgs_out = timeout_condact(100.0, -1.0, 1.0,

fgs(lr_chan_out, trans, rht_ind_mode , false),

rht_fgs_init) ;

(4) rl_chan_out = timeout_condact(20.0, -5.0, 5.0,

channel(rht_fgs_out),rl_init);

tel;

Fig. 2. FGS Synchronization Architecture using timeout condact.

The semantics of the timeout condact specifications match the formaliza-

tion in Section 2.2. Each timeout condact expression becomes a process in the

timeout automata model, and a global scheduler is synthesized in Lustre from

the set of these processes. As an example, consider Figure 3, the automatically

generated implementation in Lustre for the FGS timeout condact in Figure 2.

The timeout node (line 8 of Figure 3) is used to define the rp, cp, and tp
variables for a process within the model. The rate and drift inputs set rp,

the init time input sets the initial value of tp, and the time decrement input

corresponds to the global time decrement between steps ci. The timeout node

contains an individual count-down timer time remaining that corresponds to

tp, and generates a Boolean signal fired that corresponds to cp.

6
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The expansion of the timeout condacts in main creates instances of the

timeout node for each process and define constraints that describe the legal

values for timers and drift inputs within the model. Line (3) in Figure 3 is

the translation of the first timeout condact in Figure 2 to its implementation

as a kernel language condact construct. The component node call to fgs and

the initial values are the same; but the rate and drift parameters have been

replaced by a clock variable (corresponding to cp in the formal model) named

fired 1. This variable is set on line (6) by a call to the timeout node that

implements the time keeping operations of the timeout condacts.

On Figure 3 line (7), the model then selects the smallest time-remaining

as the amount to advance each component clock (time decrement) and feeds

that value back to each individual component timer for use in computing the

next clock tick. The definition of the node min is not shown but is what one

would expect. Since the time decrement value specifies the elapsed global

time since the last clock tick, it is also output from the main node to allow

a model checker to check properties involving global time (for example, the

maximum time that some property P can be false is less than some time t).

Assert statements are also generated to restrict the new input drift values

to be within the originally specified ranges of possible clock drift specified

in the original timeout condact constructs. For the first timeout condact,

the generated assert statements are shown in Figure 3 lines (4) and (5).

Additional input parameters for the unconstrained input drift values are also

added to the interface of main. The translation also adds new local variables

in the line following the label (1).

The translation of the timeout condact constructs involves more that just

local transformations that are possible with macro processing. The transla-

tion needs to generate new equations for each timeout condact and for defin-

ing time decrement based on a global analysis that determines how many

timeout condacts were used in the original code and what the generated time-

remaining variables for each one are. Note that the original type declarations

for fgs data, the four constant init values and the declarations of the fgs and

channel nodes are not changed in the translation and appear in the translated

code as they did in the original. Thus, they are not repeated in Figure 3.

As there are only four processes in this model, the automata is relatively

simple. However, with larger number of processes, it can become unwieldy.

It is “boilerplate” code that must be re-written for each GALS system to be

analyzed. Also, it is cumbersome to experiment with different architectural

configurations (e.g., changing the rates and drift) in the translated model. We

wish to encourage this kind of experimentation and formal analysis in the early

stages of system design. Finally, there are hints that can be provided to aid

analysis based on the structure of the automata (for example, the minimum

and maximum possible values that the system clock can advance within a

step). To make it easy to analyze these kinds of models, we would prefer to

add a language construct to automatically construct the automata.

7
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node main (drift_4: real, init_time_4: real, drift_3: real, init_time_3: real,

drift_2: real, init_time_2: real, drift_1: real, init_time_1: real,

trans: bool, lft_ind_mode: bool, rht_ind_mode: bool)

returns (time_decrement: real,

lft_fgs_pilot: bool, lft_fgs_active: bool,

rht_fgs_pilot: bool, rht_fgs_active: bool);

(1) var fired_4: real; time_remaining_4: real;

fired_3: real; time_remaining_3: real;

fired_2: real; time_remaining_2: real;

fired_1: real; time_remaining_1: real;

(2) lft_fgs_out: fgs_data ; lr_chan_out: fgs_data ;

rht_fgs_out: fgs_data ; rl_chan_out: fgs_data ;

let

(3) lft_fgs_out = condact(fired_1, fgs(rl_chan_out, trans,lft_ind_mode, true),

lft_fgs_init);

lr_chan_out = condact(fired_2, channel(lft_fgs_out), lr_init);

rht_fgs_out = condact(fired_3, fgs(lr_chan_out, trans,rht_ind_mode, false),

rht_fgs_init);

rl_chan_out = condact(fired_4, channel(rht_fgs_out), rl_init);

(4) assert(((drift_1 <= 1) && (drift_1 >= -1)));

(5) assert(((init_time_1 >= 0.0) && (init_time_1 <= (100.0 + 1))));

assert(((drift_2 <= 5) && (drift_2 >= -5)));

assert(((init_time_2 >= 0.0) && (init_time_2 <= (20.0 + 5))));

assert(((drift_3 <= 1) && (drift_3 >= -1)));

assert(((init_time_3 >= 0.0) && (init_time_3 <= (100.0 + 1))));

assert(((drift_4 <= 5) && (drift_4 >= -5)));

assert(((init_time_4 >= 0.0) && (init_time_4 <= (20.0 + 5))));

(6) fired_1, time_remaining_1 = timeout(100.0, drift_1, init_time_1,

time_decrement);

fired_2, time_remaining_2 = timeout(20.0, drift_2, init_time_2,

time_decrement);

fired_3, time_remaining_3 = timeout(100.0, drift_3, init_time_3,

time_decrement);

fired_4, time_remaining_4 = timeout(20.0, drift_4, init_time_4,

time_decrement);

(7) time_decrement = min(time_remaining_4, min(time_remaining_3,

min(time_remaining_2, time_remaining_1)));

tel;

(8) node timeout (rate: real, drift: real, init_time: real,

time_decrement: real)

returns (fired: real, time_remaining: real);

let

time_remaining = init_time -> if fired then rate + drift

else pre(time_remaining) - pre(time_decrement);

fired = (pre(time_remaining) <= pre(time_decrement));

tel;

Fig. 3. Translated FGS Timeout Automata Model
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3 Timeout Automata as a Language Extension

Implementing the timeout automata described in Section 2 by translation to

the kernel Lustre language does not, per se, pose any exceptionally difficult

challenges. Any solution, including ours, will (i) add a timeout node like the

one in Figure 3 to the specification, (ii) add the equations that call to the

timeout node and calculate the time decrement value, and (iii) replace all

timeout condact constructs with the appropriate condact constructs that

use the new Boolean fired flag. The main challenges arise in satisfying the

look-and-feel and composability criteria described in Section 1. We have

built [12] an extensible language framework based on higher-order attribute

grammars (AGs) [17,30] and implemented an AG specification language called

Silver [26] that supports the building of languages and extensions that satisfy

these criteria. In this approach a host language and language extensions are

implemented as individual Silver AG modules. The supporting tools allow the

composition of these modules to define new extended languages with little or

no implementation-level knowledge of the host or languages extensions [12].

In this section we give a brief overview of how the timeout condact extension

is constructed using this approach. Due to space constraints this is necessarily

cursory and a number of simplifications and omissions have been made, but

the full Silver specifications can be found at www.melt.cs.umn.edu.

3.1 Mini-Lustre as the Host Language

The specification for Mini-Lustre (a subset of Lustre) is written in Silver, a

portion of which is shown in Figure. 4. A Silver specification for a language

consists of an unordered series of declarations that define its concrete and ab-

stract syntax as well as rules which assign values to attributes associated with

non-terminals in the abstract syntax tree (AST). Since concrete syntax is de-

fined as expected for traditional parser and scanner generators we do not show

those and only discuss abstract syntax. To define the (abstract) syntax, there

are declarations for terminals, non-terminals (keyword nt), and productions

(prod), following standard AG terminology [17]. Synthesized attributes (syn)

propagate information up the abstract syntax tree; inherited attributes (inh)

propagate information down the AST. Equations defining attribute values are

used to specify the semantic analyses, such as type checking. 7

The first line in Figure 4 provides the name of this grammar. These are

used in import statements to compose attribute grammar specifications to

create the specification for an extended language. Next, are declarations for

nonterminals. Synthesized attributes pp, errors, and ctrans of type String

are declared; these attributes, respectively, define a node’s pretty-print or

“unparsed” representation, the errors occurring on the node and its children,

and its translation to C. The attribute typerep is used to represent the type

7 This is meant broadly and can include causality and initial-state-definedness checks.
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grammar lustre ;

nt Root, DclList, Dcl, VarDclList, VarDcl, Locals, EqList, Eq, IdList, Expr;

syn attr pp :: String occurs on Root, Dcl, Expr, VarDcl, ... ;

syn attr errors :: String occurs on Root, Dcl, Expr, ... ;

syn attr ctrans :: String occurs on Root, Dcl, Expr, ... ;

syn attr typerep :: TypeRep occurs on Expr, ExprList ;

prod root r::Root ::= dl::DclList

{ r.pp = dl.pp; r.errors = dl.errors; r.ctrans = ... dl.ctrans ...; }

prod dclListCons dl::DclList ::= d::Dcl dltail::DclList { ... }

prod dclListOne dl::DclList ::= d::Dcl { ... }

prod nodeDcl n::Dcl ::= name::Id inputs::VarDclList outputs::VarDclList

locals::VarDclList eqs::EqList

{ n.pp = "node " ++ name.lexeme ++ " (" ++ inputs.pp ++ ") " ++ "returns"

++ " (" ++ outputs.pp ++ ") " ++ "\n" ++ locals.pp ++ "\nlet\n"

++ eqs.pp ++ "\ntel;\n";

n.errors = inputs.errors ++ outputs.errors ++ ... ; n.ctrans = ... ; }

prod varDcl vd::VarDcl ::= var::Id type::Type { ... }

prod equation eq::Eq ::= ids::IdList expr::Expr

{ eq.pp = ids.pp ++ " = " ++ expr.pp ++ ";\n" ;

eq.errors = ... ; /* ensure ids and expr have same type(s) */ }

prod idExpr e::Expr ::= id::Id

{ ...; e.ctrans=...; e.errors = ... ; /* ensure id is declared */ }

prod condactExpr e::Expr ::= f::Expr call::Expr init_vals::ExprList { ... }

Fig. 4. A portion of the Silver specification of Mini-Lustre.

of an expression or expression/id list. The occurs on clause specifies which

nonterminals an attribute decorates. We will elide other nonterminal and

attribution declarations as they can be inferred from the specification.

A Mini-Lustre program (represented by Root) is a series of declarations

(DclList). The nonterminal Root on the left hand side of production root is

named r (“::” reads as “has type”); the right hand side has a single DclList

nonterminal named dl. Equations defining the synthesized attributes of r are

listed in curly brackets. For example, the first equation defines the pp attribute

on r to be the value of pp on dl. A node, defined by nodeDcl, has a name

(name), a list of input parameter declarations (inputs:: VarDclList), a list

of output parameters (outputs), a list of local variable declarations (locals),

and a list of equations (eql:: EqList). The production varDcl binds iden-

tifier names to types. These bindings are stored in a symbol table that is

passed to the equations in eqs and used for type-checking the expressions and

equations following rules specified by the errors attributes. For example, the

production equation checks that the identifier id and expression expr have

the same type and generates an error message if they do not.

3.2 Timeout Automata as a Language Extension

To add the timeout condact construct to the extensible Lustre framework we

must write a Silver attribute grammar specification that will specify the con-
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crete and abstract syntax of the new construct, perform error checking and

other analyses on the timeout condact, specify its translation to a condact

construct, and for each use of a timeout condact in a node add additional

equations and parameters to that node. Further we must add the definitions

for the timeout and min node to the Lustre specification. Using language fea-

tures provided by Silver, all these tasks can be specified in a single grammar

module, thus making this extension a stand-alone unit that can be optionally

composed with other similarly-defined language extensions.

Fig. 5 shows the Silver production tmoCondactExpr that specifies the ab-

stract syntax of the timeout condact construct. To maintain the native look-

and-feel, the pp, errors, and typerep attributes are defined explicitly in this

production. Explicitly defining errors ensures that type errors are detected

and reported on the timeout condact, not its kernel Lustre translation. Though

elided, the definition of errors checks that the types of values returned by

the node call call match the types of the initial values init vals.

Although tmoCondactExpr explicitly defines some attributes, it does not

do so for attributes such as ctrans (or attributes for translating to the input

languages of different model checkers). These attributes are implicitly defined

using forwarding [27] through translation to a condact (condactExpr) in the

host language by using the forwards to clause. When a tmoCondactExpr

node in the AST is queried for an attribute that is not explicitly defined by

an attribute definition, it forwards that query to the forwards-to construct.

The value defined there is returned as the value of that attribute for the

timeout condact. Thus, the value of ctrans on a timeout condact is the value

of the ctrans attribute on the generated (translated-to) condact construct.

Therefore, all back-end tools only see the generated condact calls while Lustre

programmers see the timeout condact calls they write.

In addition, the Silver specification assigns a unique integer identifier (at-

tribute num) to each timeout condact call. The identifier for each call is used

in generated local variable names such as fired 1 and fired 2 as seen in

Figure 3. Furthermore, relevant information regarding this timeout condact

call is gathered and propagated up the AST to the enclosing node declaration

using the synthesized attribute tmoCallInfoList. This information is used

for generating the added equations for variables such as time remaining 1

and time decrement also seen in Figure 3. The additional attribute defini-

tions of tmoCallInfoList on existing host language productions can be all

specified in the grammar module of the timeout condact extension by using

the Silver language feature aspect productions, and no changes to the host

language specification need to be made [13]. Once the information of all

timeout condact calls in a node is gathered to the level of node declaration

(production nodeDecl), it is used to generate additional equations and param-

eters to be inserted into the node. This step is a global transformation that

is simplified and modularly defined by using the Silver language feature col-

lections. Its mechanism is not further elaborated here and interested readers

11
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grammar timeout; import lustre;

prod tmoCondactExpr e::Expr ::= rate::Expr min_drift::Expr max_drift::Expr

call::Expr init_vals::ExprList

{ e.pp = "timeout_condact(" ++ rate.pp ++ ", " ++ min_drift.pp ++ ... ;

e.typerep = call.typerep ;

e.errors = ...; /* check that call and init_vals have the same type */

forwards to condactExpr(idExpr(mkTerminal(Id, "fired_" ++ toString(e.num))),

call, init_vals);

e.num = gen_unique_int ( ) ;

/* gathering information of timeout_condact calls */

e.tmoCallInfoList = [tmoInfo(rate, min_drift, max_drift, e.num)]; }

Fig. 5. Silver specification for the timeout condact construct.

may refer to [13] for detailed explanations.

4 Conclusion

4.1 Discussion

In this paper we have defined a timeout condact construct useful in specifying

and analyzing GALS architectures. It has been implemented as a language

extension in an extensible Lustre framework. Timeout automata is one of

several approaches for modeling asynchrony within synchronous languages. It

has been used successfully on several protocol examples (e.g. [9,3,4]) and al-

lows a natural expression of interesting safety and bounded liveness properties

over GALS architectures. However, in the simplistic translation described in

this paper, it adds a significant amount of additional state into the model,

which makes formal analysis more expensive. Abstractions of the possible

real-time evolutions of the architecture, such as those described by [15] may

yield more tractable analysis. The use of extensible languages opens up several

possible directions for future research. First, we plan to investigate whether

abstractions can be performed as part of the compilation step to “kernel” lus-

tre. Second, we plan on investigating techniques for describing clock relations

(such as in [15]) directly through language extensions.

Our initial efforts in extensible languages were in the domain of program-

ming languages. We have built an extensible specification of Java 1.4 and

specified a number of non-trivial language extensions [29]. One extension em-

beds the database query language SQL into Java so that queries can be writ-

ten naturally and syntax and type errors in SQL queries can be detected at

compile-time, instead of run-time, as is the case in library-based approaches.

4.2 Related Work

There have been many other efforts to extend Lustre with new language fea-

tures. Many of these features can also be implemented by translation to the

a kernel Lustre language. For example, recent work to add state machines to
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Lustre [8] translates the state machine constructs into a kernel Lustre language

and the addition of modules and generics proposed for Lustre v6.

Extensions for synthesizing Lustre logical clocks from Simulink models

with “real-time” rates for blocks are proposed in [5,6]. This work is similar

in that it moves from a notion of real-time to logical time. Unlike timeout

automata, it imposes a fixed real-time value on the base rate of the model;

this allows for code generation but makes it more difficult to analyze processes

with non-harmonic periods or arbitrarily small amounts of process drift.

Embedded domain specific languages [16], higher-order extensions to Lus-

tre [23], and reactive extensions to ML [19] can be used to build extensible

language frameworks for synchronous languages [7]. But composition of lan-

guage features typically requires some implementation level understanding of

the language extension and thus various extensions cannot be as freely com-

posed as in our approach [12].

More generally, several approaches have been described for extending lan-

guages with new features. Macros systems (lexical, syntactic, hygienic [18],

etc) do allow new languages constructs to be specified but they lack an effective

means for performing the static analysis used to, for example, generate domain

specific error messages. Note that some modern macro systems (e.g. [1] how-

ever do a some limited facilities for error processing. Object-oriented frame-

works, such as Polyglot [22], have also been proposed for building extensible

languages, but they do not support the automatic composition of language

extensions that is provided by the attribute grammar-based approach.

Modular language definition and extensibility has received a significant

amount of attention from the AG community. Other attribute grammar

approaches lack forwarding and the default definition of attributes that it

provides - thus the reuse of language features specified as AG fragments is

achieved only by writing attribute definitions that “glue” new fragments into

the host language AG. However, a particularly interesting approach is the

rewritable reference attribute grammars [10] in the JastAddII system. New

constructs are translated to host language constructs by destructive rewrites

on the syntax tree. Although forwarding is similar to rewriting, it is non-

destructive; the original tree and the forwards-to tree exist simultaneously.

This allows both the explicit and implicit (via forwarding) specification of se-

mantics, a capability that we have found to be crucial in the highly modular

language specifications required for extensible languages and composable lan-

guage extensions. Some modularity is lost when the rewrites are destructive.
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