
Formal Methods Group ETH Zürich

June 2003

Armin Biere, Cyrille Artho, Malek Haroud, Viktor Schuppan

Computer Systems Institute

ETH Zürich, Switzerland

FMICS’03, Røros, Norway

Vision 2

Formal method tools are used like compilers:

In the context of (formal)


1. verification.

2. synthesis.

3. analysis.

FMICS’03 – Røros – Norway – June 2003 Formal Methods Group – Computer Systems Institute – ETH Zürich

Overview 3

1. Model Checking, SAT, and QBF.

2. Translation of liveness into safety.

3. High-level data races.

4. Replaying of multi-threaded executions.

5. Equivalence checking of SDL vs C.

FMICS’03 – Røros – Norway – June 2003 Formal Methods Group – Computer Systems Institute – ETH Zürich

Model Checking 4

➤ BDD based mu-calculus model checker mu-cke

– Efficient implementation.

– Input language with C++ syntax for specifying model and properties.

➤ Performance study of BDD based model checking

➤ Bounded Model Checking

– Leverages power of SAT solvers for model checking purposes.

– Wide industrial acceptance.

FMICS’03 – Røros – Norway – June 2003 Formal Methods Group – Computer Systems Institute – ETH Zürich

SAT and QBF 5

➤ SAT (propositional satisfiability solvers)

– Continuing increase in reasoning power.

– Instances with million of variables can often be handled.

– Dedicated heuristics for bounded model checking possible.

➤ Solvers for QBF (quantified boolean formula), e.g., ∀ x ∃ y [(x∨y)∧ (x∨y)]

– Start to become practical . . .

– . . . although more practical research necessary (efficient implementations).

– Potentially allow to make bounded model checking complete.

➤ Applications of QBF and SAT in other domains (e.g., SW checking).

FMICS’03 – Røros – Norway – June 2003 Formal Methods Group – Computer Systems Institute – ETH Zürich

Translating Liveness into Safety: Finite State Systems 6

1 2

3
+ Liveness 7→ 1’

3’

2’
⊥

1 2

3 + Safety

If the number of states is finite:

1. A system with a liveness property can be transformed into a system with an
equivalent safety property.

2. The transformed system can be model-checked efficiently .

FMICS’03 – Røros – Norway – June 2003 Formal Methods Group – Computer Systems Institute – ETH Zürich

Translating Liveness into Safety: Predicated Radius/Diameter 7

d =3¬p

¬p¬p¬p¬p

p

d=2

Bounds stated at FMICS’02 require further restrictions:

➤ Search for counterexample traverses paths where ¬p holds.

➤ Notion of predicated radius and diameter.

➤ Leads to tight bound for bounded model checking of Fp.

FMICS’03 – Røros – Norway – June 2003 Formal Methods Group – Computer Systems Institute – ETH Zürich

JNuke: Our own Java Virtual Machine 8

Platform for static and dynamic analysis

Loader

VM

Instrumenter

Bytecode

➤ Java VM written in C.

➤ API for run-time analysis.

➤ Small state representation.

➤ Rollback (undo) operations.

➤ “Exhaustive” scheduling possible (Rivet).

➤ Instrumentation: reproducing counterexamples.

FMICS’03 – Røros – Norway – June 2003 Formal Methods Group – Computer Systems Institute – ETH Zürich

JNuke: High-level data race analysis 9

X
Y

Z

X Y

Thread 2Thread 1

➤ Both accesses are protected by a common lock (Eraser).

➤ Different atomicity assumptions by the two threads.

➤ New source of potential errors, found by view consistency .

FMICS’03 – Røros – Norway – June 2003 Formal Methods Group – Computer Systems Institute – ETH Zürich

JNuke: Replay of Multi-Threaded Executions 10

modified
.class

replay
engine

.class

jreplay

Dynamic
Checker

Checker
Static

VM
JNuke

compliant

T0

T1

T2

tT1

before Class 1 0 1
switch 1
before Class 2 1 1
switch 2
before Class 1 2 1
switch 1

terminate
in Class 2 1 10 VM/

debugger

schedule deterministic
execution

➤ Enables replay of thread schedules independently of specific VM.
→ Off-the-shelf debuggers.

➤ Schedule format not tailored to JNuke VM.
→ Usable by other tools.

FMICS’03 – Røros – Norway – June 2003 Formal Methods Group – Computer Systems Institute – ETH Zürich

Equivalence Checking SDL vs C 11

SDL

Synthesized
C Program

Manually Generated
Optimized C Program

 Equivalence Checking
Verification with

S
yn

th
es

is

Synthesis

SDL as modelling language in telecommunication applications

same motivation
as in HW equivalence checking

(or more general for embedded SW)

Model

FMICS’03 – Røros – Norway – June 2003 Formal Methods Group – Computer Systems Institute – ETH Zürich

Establishing formal methods 12

Short-term:

Scalability, light-weight process.

Long-term:

Formal loop: Formal methods on all levels.

FMICS’03 – Røros – Norway – June 2003 Formal Methods Group – Computer Systems Institute – ETH Zürich

