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Vision 2

Formal method tools are used like compilers:

In the context of (formal)


1. verification.

2. synthesis.

3. analysis.
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Overview 3

1. Model Checking, SAT, and QBF.

2. Translation of liveness into safety.

3. High-level data races.

4. Replaying of multi-threaded executions.

5. Equivalence checking of SDL vs C.
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Model Checking 4

➤ BDD based mu-calculus model checker mu-cke

– Efficient implementation.

– Input language with C++ syntax for specifying model and properties.

➤ Performance study of BDD based model checking

➤ Bounded Model Checking

– Leverages power of SAT solvers for model checking purposes.

– Wide industrial acceptance.
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SAT and QBF 5

➤ SAT (propositional satisfiability solvers)

– Continuing increase in reasoning power.

– Instances with million of variables can often be handled.

– Dedicated heuristics for bounded model checking possible.

➤ Solvers for QBF (quantified boolean formula), e.g., ∀ x ∃ y [(x∨y)∧ (x∨y)]

– Start to become practical . . .

– . . . although more practical research necessary (efficient implementations).

– Potentially allow to make bounded model checking complete.

➤ Applications of QBF and SAT in other domains (e.g., SW checking).
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Translating Liveness into Safety: Finite State Systems 6
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If the number of states is finite:

1. A system with a liveness property can be transformed into a system with an
equivalent safety property.

2. The transformed system can be model-checked efficiently .
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Translating Liveness into Safety: Predicated Radius/Diameter 7
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Bounds stated at FMICS’02 require further restrictions:

➤ Search for counterexample traverses paths where ¬p holds.

➤ Notion of predicated radius and diameter.

➤ Leads to tight bound for bounded model checking of Fp.
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JNuke: Our own Java Virtual Machine 8

Platform for static and dynamic analysis

Loader

VM

Instrumenter

Bytecode

➤ Java VM written in C.

➤ API for run-time analysis.

➤ Small state representation.

➤ Rollback (undo) operations.

➤ “Exhaustive” scheduling possible (Rivet).

➤ Instrumentation: reproducing counterexamples.
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JNuke: High-level data race analysis 9
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➤ Both accesses are protected by a common lock (Eraser).

➤ Different atomicity assumptions by the two threads.

➤ New source of potential errors, found by view consistency .
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JNuke: Replay of Multi-Threaded Executions 10
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➤ Enables replay of thread schedules independently of specific VM.
→ Off-the-shelf debuggers.

➤ Schedule format not tailored to JNuke VM.
→ Usable by other tools.
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Equivalence Checking SDL vs C 11
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SDL as modelling language in telecommunication applications

same motivation
as in HW equivalence checking

(or more general for embedded SW)

Model
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Establishing formal methods 12

Short-term:

Scalability, light-weight process.

Long-term:

Formal loop: Formal methods on all levels.
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