
Trondheim, June 2003

Formal methods Research at NTNU
Department of Telematics (ITEM)

FMICS 20003 Røros

By

Rolv Bræk

Trondheim, June 2003

• The real-time and telecom domain:
– Distributed systems

– Highly parallel and

– time dependent behaviour

– High dependability

– High performance

• Stateful reactive behaviour

• Industrial applications

• Constructive methods (before corrective)

• Rapid service engineering, dynamic adaptation and
deployment

• The real-time and telecom domain:
– Distributed systems

– Highly parallel and

– time dependent behaviour

– High dependability

– High performance

• Stateful reactive behaviour

• Industrial applications

• Constructive methods (before corrective)

• Rapid service engineering, dynamic adaptation and
deployment

Our focus is on:

Trondheim, June 2003

Our core model architecture

Realisation
software electronics mechanics

Deployment

Functionality
(PIM + PSM)

Descriptions

Performance …
Dependability
….

Objects Properties

Tests…
Measurements

Services …

Trondheim, June 2003

…using the ITU-T languages and UML

Class,
State-
Machines

UseCase,
Sequence,
Collaboration,
OCL,
Activity

Deployment,
Component,
Class

Sequence,
Collaboration,
OCL

 Sequence,
Collaboration,
OCL

Objects Properties

Realisation

Deployment

Functionality

UMLsdl,

SDL,
ASN.1

MSC,

 TTCN,
MSC

CHILL,
ASN.1

TTCN,
MSC

Objects Properties

ITU-T UML

Trondheim, June 2003

… and the translation approach

Elabortion
approach

Translation
approach

Functionality

Deployment

Realisation

Initial
development

New
service

New
realisation

Effort spent

Functionality

Deployment

Realisation

Implementation
oriented

Implementation
oriented

Design orientedDesign oriented

Reinvented
in MDA?

Trondheim, June 2003

… with evolving models
objects properties

context

content

•••
component types
(follow same pattern)

•••

•••

•••

•••

design

specification

Trondheim, June 2003

... being aligned and consistent

•••

Specification

•••

Design

Verify
sequences

Synthesize

Verify object
behaviour

Decompose

Validate
interfaces

Trondheim, June 2003

Towards service modularity
• Services are dynamic structure of of co-operating actors playing

different roles, i.e. a kind of play.

• Actors take part in several plays and play several roles simultaneously.

• Service modularity require that roles be modelled and designed
separately and then composed dynamically in a manner that enable
desirable plays and avoids undesirable plays.

Service/Play1

Service/Play2

Service/Play3

Actor1 Actor2 Actor3 Actor4 Actor5

Trondheim, June 2003

A service role is:

Conference Call …

Enquiry Call a b

c

com

Basic Call a b
call(a,b)

callind(a)

MSC Basic Call Busy

answer(b)

calling(b)

end

banswer(b)

end

a:sub comsys b:subcom

call(a,b)
callind(a)

MSC Basic Call Succesful

answer(b)

calling(b)

end

banswer(b)

end

a com b

Service role behaviourServices Service roles: s-roles

• the part some object plays in a service

• used to model services separately

Trondheim, June 2003

An association role is:

a bcomService roles

• the part of a behaviour visible on an association end or
interface

• used to define interface behaviours

Association roles:
a-roles

call(a,b) callind(a)

answer(b)
calling(b)

a-role behaviour

a bcom

Trondheim, June 2003

Working with a_roles

S1 a

project

correct

a’

mirror

S2

synthesize

S3a’’

Sna’’

S1 a a’ find, validate

Trondheim, June 2003

call

Connection

Idle

callind

ready

Rx(D)

indata(D)

outdata(D) discon end

Tx(D) end discon

Connection Connection Idle Idle

DCL D Frame;
/* Frame is a user defined type*/

PROCESS TYPE ModemServer

[ready,
Tx,
discon]

[call,
Rx,
discon]

[callind,
indata,
end]

[outdata,
end]

m p

Are there any problems here?

Trondheim, June 2003

call

Connection

Idle

ready

Rx(D) none discon none

Tx(D) discon

Connection Connection Idle Idle

DCL D Frame;
/* Frame is a user defined type*/

PROCESS TYPE ModemServer

[ready,
Tx,
discon]

[call,
Rx,
discon]

[callind,
indata,
end]

[outdata,
end]

m p

a-role towards m: two problems revealed

Not input
consistent

discon Rx(D)

To be added

Mixed initiative state

Trondheim, June 2003

Roles are like projections and
useful for:

• Architecture definitions:a-roles help to define interfaces
precisely

• Design verification:comparing required roles with the
design

• Link validation:provided a-roles must “contain” required
a-roles

• Finding design flaws: projections must be consistent

• Reuse:roles define interfaces and reusable functionality

• Design:roles serve as specifications and role designs as
(reusable) composition units

Trondheim, June 2003

Implementing using ActorFrame

Actor
uid: Sting

Role
CS

innerActor[*]:
Actor

In
Port

Out
Port

:ActorSM

Actor
uid: Sting

Role
CS

innerActor[*]:
Actor

In
Port

Out
Port

:ActorSM

Actor
uid: Sting

Role
CS

innerActor[*]:
Actor

In
Port

Out
Port

:ActorSM

Actor
uid: Sting

Role
CS

innerActor[*]:
Actor

In
Port

Out
Port

:ActorSM

Actor
uid: Sting

Role
CS

innerActor[*]:
Actor

In
Port

Out
Port

:ActorSM

Actor
uid: Sting

Role
CS

innerActor[*]:
Actor

In
Port

Out
Port

:ActorSM

• Roles are played by Actors

• An actor controls the lifecycle
for its inner Actors(Roles)

• Hierarchical composition

• Internal structure described in DD

• Compliant with UML2.0

Trondheim, June 2003

Implementation Layering

Application:
MyUserAgent, MyTerminalAgent,
MyCommunityAgent,…. My Roles

ServiceFrame:
UserAgents, TerminalAgents, CommunityAgents,
ApplicationActors, ….

ActoFrame:
Actors, Roles, Plays, Patterns, ….

JavaFrame:
CompositeObjects, StateMachines, Mediators,
CompositeStates, Asynchronous communication,

Java VM

Provides Application
domain concepts

Provides Role modeling
concepts

Provides UML2.0
concepts

Trondheim, June 2003

The emerging service context

Access and transport network

Service Enablers

Tools
Service Creation Environments

Methods

Terminals

Appliances

Parlay, OSA, JAIN, ...

Application Servers (Service
Execution Environments)

Services

 Access and transport network

Service Enablers

Tools
Service Creation Environments

Methods

Terminals

Appliances

soap

http

RMI,
…

Parlay, OSA, JAIN, ...

Application Servers (Service
Execution Environments)

Users and
user communities

Services

Service
engineering

Service
deployment
and
execution

Service
platforms

Trondheim, June 2003

@work in a distributed
environment

Lab resources are
available at a number of
locations, making the
common platform a
powerful resource for
students and researchers

Grimstad

Trondheim

Fornebu
Asker

Tromsø

Gjøvik

Trondheim, June 2003

Using the Model Driven Architecture

Implementation
design

Application

Models using UML 2.0

Implementations using java, C,..

Domain models

Platform

Application’
Functionality Models using UML 2.0

PSM

PIM

Deployment Models using UML 2.0

