On-the-Fly Verification using CADP

Radu Mateescu INRIA Rhône-Alpes / VASY 655, avenue de l'Europe F-38330 Montbonnot Saint Martin, France http://www.inrialpes.fr/vasy

INRIA Rhône-Alpes http://www.inrialpes.fr

- Created in December 1992
 - 19 research projects

- Experimental technological platforms (PC clusters, highspeed networks, robotics, virtual reality studio)
- Knowledge dissemination
 - Over 130 doctoral candidates
 - University courses (Inst. Nat. Polytechnique Grenoble, Univ. Joseph Fourier, Ecole Normale Sup. de Lyon)
- Technology transfer
 - Cooperations with Bull and W3C
 - 6 start-up companies

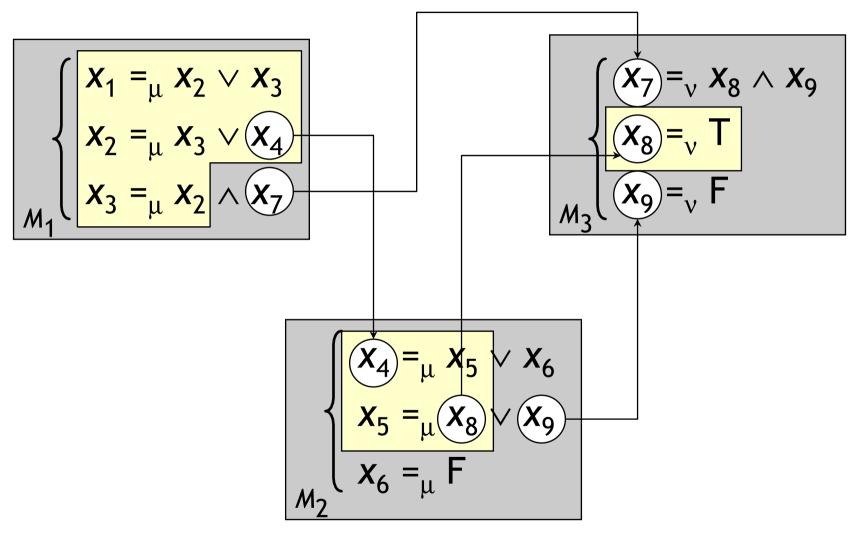
The VASY team (Validation of Systems) http://www.inrialpes.fr/vasy

- Leader: Hubert Garavel
- 2 INRIA researchers: Radu Mateescu, Frédéric Lang
- 1 Bull engineer: Solofo Ramangalahy
- 1 post-doc, 1 PhD student, 3 expert engineers
- Scientific areas of interest:
 - Formal methods and specification languages
 - Model-based verification technologies
 - Industrial case-studies and applications
- Software tools:
 - The CADP verification toolbox
 - The TRAIAN compiler (E-LOTOS)

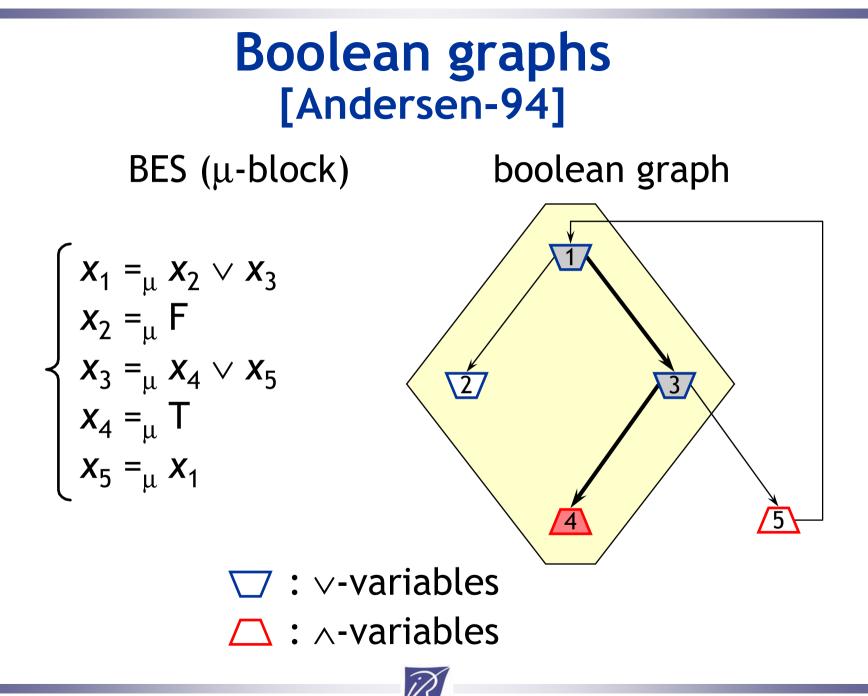
The CADP toolbox http://www.inrialpes.fr/vasy/cadp

- Input languages
 - ISO formal description techniques (LOTOS, E-LOTOS)
 - Networks of communicating automata
- Functionalities
 - Compilation, rapid prototyping, interactive simulation
 - Equivalence checking, model checking
 - Compositional verification, test generation
- Applications: 65 case studies, 13 research tools
- OPEN/CAESAR [Garavel-98]
 - CADP generic environment for state space manipulation
 - Implicit state space representation (successor function)

Motivation

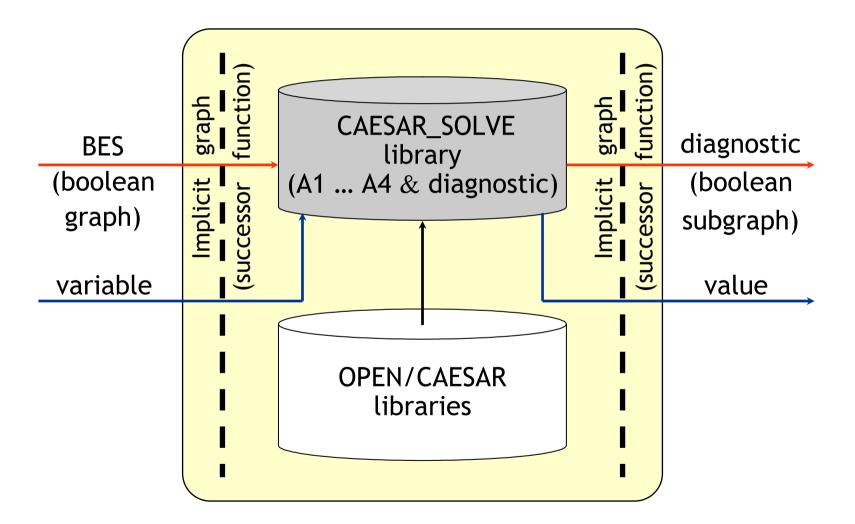

- On-the-fly verification
 - Builds the state space incrementally
 - Allows to detect errors in large systems
- Practical needs
 - Easy construction of on-the-fly verification tools
 - Generic software components for verification
- Boolean Equation Systems (BES)
 - Technology for equivalence checking and model checking
 - On-the-fly resolution and diagnostic generation

→ Goal: provide generic software (libraries)

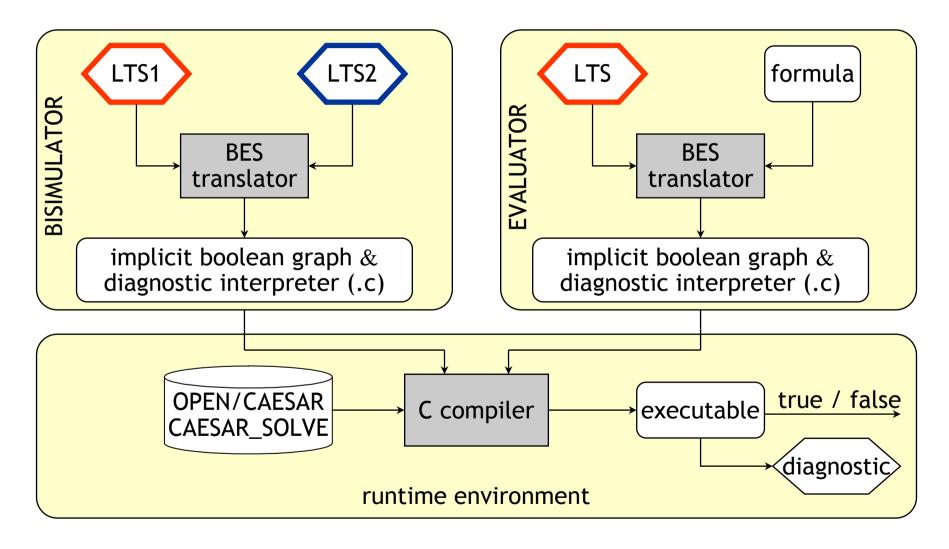


Alternation-free BES $\begin{cases} \mathbf{x}_1 =_{\mu} \mathbf{x}_2 \lor \mathbf{x}_3 \\ \mathbf{x}_2 =_{\mu} \mathbf{x}_3 \lor \mathbf{x}_4 \\ \mathbf{x}_3 =_{\mu} \mathbf{x}_2 \land \mathbf{x}_7 \end{cases}$ (X₇) $=_{v} \mathbf{X}_{8} \wedge \mathbf{X}_{9}$ (**X**₈)= $(\mathbf{X}_{\mathbf{Q}})$ M₁ Mz √ X₆ **X**₅ Ma

On-the-fly resolution


Resolution algorithms [TACAS 2003]

- A1 (DFS, general)
 - Memory complexity O (|V|+|E|)
- A2 (BFS, general)
 - Small-depth diagnostics
 - Memory complexity O (|V|+|E|)
- A3 (DFS, acyclic)
 - Memory complexity O (|V|)
- A4 (DFS, disjunctive / conjunctive)
 - Memory complexity O (|V|)


Time

complexity
O(|V|+|E|)

CAESAR_SOLVE library

BISIMULATOR and EVALUATOR

Algorithm usage guidelines

- A1 and A2 (diagnostic depth \downarrow)
 - All equivalences and their preorders
 - Alternation-free μ -calculus formulas
- A3 (memory ↓)
 - Strong equivalence: one LTS acyclic
 - Safety and $\tau^*.a$: one LTS acyclic (τ -circuits allowed)
 - Branching and observational: both LTS acyclic
 - Acyclic LTS and μ -calculus formula (via reduction)
- A4 (memory ↓)
 - All equivalences: one LTS deterministic
 - CTL, ACTL, and PDL formulas

Ongoing and future work

- New algorithms within CAESAR_SOLVE
 - Single-scan & low-memory algorithms for trace-based verification (low-depth acyclic boolean graphs)
 - Further resolution strategies (combined DFS-BFS, random exploration, ...)
- New applications of CAESAR_SOLVE
 - Detection of τ -confluent transitions [CAV 2003]
 - Test generation } using diagnostic generation
 - Discrete controller synthesis
 - Horn clause resolution
- **Distributed** resolution algorithms
 - \rightarrow Distributed equivalence checking and model checking

