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µCRL = process algebra + abstract data types

µCRL inherits from abstract data types:

• sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nat, List, Bool

• function symbols . . . . . . . . . . . . . . . . . . . . .and: Bool × Bool → Bool

• equations . . . . . . . . . . . . . . . . . . . . length(cons(x,l)) = succ(length(l))

µCRL inherits from ACP style process algebra :

• atomic actions with synchronization . . . . . . .read | write = comm

• abstraction, encapsulation, renaming . . . . . . . . . . . . . . . . . . . . τ, δ, · · ·

• process operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+, ·, ||

• recursive process equations . . . . . . . . . . . . . . . . . . . X = a.c.X + b.X
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µCRL = · · · + integration

µCRL provides connections between data and processes:

atomic actions have data labels: . . . . . . . . send(frame(x , y))

conditions on data: . . . . finish / empty(buffer) . continue

choice over data: . . . . . . . . . . . . . . .
∑

x:Nat rd(x).wr(Suc(x))

parameterized recursion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X(prev : Nat) =
∑

next:Nat

read(next).send(prev).X(next)
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Optimizations

Various optimizations are implemented

• Compiler techniques (control + data flow analysis)

– replace unchanged variables by constants

– remove variables that are not used

– reset variables when temporarily not used

• Automated theorem prover based

– invariant generation/checking

– reachability analysis

– Partial-order-like reduction based on

∗ Confluence detection (static)

∗ Confluence-based state space reduction (on-the-fly)
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Linear process format

X(d : D) =
∑

e1:E

c1(d, e1) ⇒ a1(d, e1).X(g1(d, e1))

+ · · ·

+
∑

en:E

cn(d, en)⇒ an(d, en).X(gn(d, en))

• d is a vector of state variables

• ei is the vector of local variables for summand i

• ci is the enabling condition for summand i

• ai is the (visible/invisible) actions for summand i

• gi is the next-state function for summand i

X(d) a−→ X(d′) iff for some i,

∃ei. ci(d, ei) ∧ d
′ = gi(d, ei) ∧ a = ai(d, ei)
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Example: linearization of lossy channel

K(a : Nat) = 0

∑

d

in(a, d) ·1
(

τ ·2 loss+ τ ·3 out(a, d)
)

·0 K(a)

K(17) is linearized by introducing a program counter:

proc K(a, x, pc) =
∑

d pc = 0⇒ in(a, d) ·K(a, d, 1)

+ pc = 1⇒ τ ·K(a, x, 2)

+ pc = 1⇒ τ ·K(a, x, 3)

+ pc = 2⇒ loss ·K(a, x, 0)

+ pc = 3⇒ out(a, x) ·K(a, x, 0)

init K(17,⊥, 0)

Parallel composition and hiding can be defined directly on linear

processes. In practice, no problematic blow-up occurs.
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Correctness of static analysis tools

• most optimization tools yield state mappings on LPOs

• state mappings on LPOs yield functional bisimulations on LTSs

• invariants can be used to verify state mappings

• state mappings preserve invariants (in two directions)

• the Focus and Cones method provides matching criteria to prove

that two linear processes are branching bisimilar

• LPO meta-theory has been completely verified in PVS

• mcrl2pvs: individual specifications can be translated to PVS

automatically, and verified by interactive theorem proving
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State Space Reduction by Confluence

An LTS can be reduced, by exploiting confluence properties.

strong

state space reduction:

commutation:

τ a

a τ

b
a

τ

τ

b

τ a

c

We will study subsets ©τ−−→ ⊆ τ−−→.
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Confluence Notions
©τ−−→ ⊆ τ−−→ is step/reduce confluent in an LTS iff:

©τ

a aSC

©τ

©τ

a aRC

©τ

Note: SC ⇒ RC
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Reduction based on Confluence Information

A representation map replaces each state by its representative, which

must be unique in the final strongly connected components.

−→ is a visible step, −→ are ©τ−−→ steps.

Representation maps can be computed on-the-fly by an adaptation of

Tarjan’s algorithm.

Theorem: if ©τ−−→ is RC and φ is a representation map, then L↔b Lφ.
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Confluence detection on LPO

• Mark all τ -summands that commute with all other summands.

• Invariants can be used to prove commutation.

• ©τ−−→ := the transitions generated from marked τ -summands.

• Then ©τ−−→ is an SC, and hence RC, subset of τ−−→, so it can be used

for on-the-fly reduction.

• Confluence marking is preserved by state mappings

• All meta-theory on confluence has been verified in PVS.
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Confluence Formula Generation

∑

ea

ca(d, ea)⇒ a(d, ea).X(ga(d, ea))

∑

eτ

cτ (d, eτ )⇒ τ.X(gτ (d, eτ ))

The commutation formula for this (a, τ)-pair is:

∀d, ea, eτ . ca(d, ea) ∧ cτ (d, eτ ) →

cτ (ga(d, ea), eτ )

∧ ca(gτ (d, eτ ), eτ )

∧ a(d, ea) = a(gτ (d, eτ ), ea)

∧ ga(gτ (d, eτ ), ea) = gτ (ga(d, ea), eτ )
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Special-purpose theorem prover

• The µCRL toolset comes with a special-purpose automated

theorem prover.

• It handles q.f.f. Boolean formulas over an abstract data type.

• It is based on EQ-BDDs, an extension of BDDs with equations

and function symbols (Groote, vdP).

• Other applications are:

– inductive invariant checking

– removal of “dead” summands

– enhance static analysis tools

– Future: check user provided state mappings
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Very Recent Developments

• Symbolic Model Checking on LPO [Groote, Willemse]

– handles regular µ-calculus with data and quantifiers

– applies directly to LPOs (possibly infinite state spaces)

– transformed to Boolean equation systems with data parameters

[Groote, Mateescu]

– solved by equational binary decision diagrams

• Abstract interpretation of LPO [Valero, JvdP]

– based on abstraction of data domains.

– results in a Modal LPO, containing may/must transitions.

– yields under/over approximations, using 3-valued logic.

• Symmetry Reduction [van Langevelde]
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State Space Generation and Analysis

(this is only possible for finite state spaces)

• Explicit LTS Generation from a linear process

(narrowing-like technique to solve
∑

over infinite domains)

• Distributed implementations [Blom, Orzan]

– state space generation (in files Si, Tij)

– strong bisimulation minimization

– branching bisimulation minimization

• Open/Cæsar interface is implemented.

– on-the-fly analysis of µCRL specs by CADP toolset

– model checking, equivalence checking, visualization . . .

• Visualization of state space of > 106 nodes [Groote, van Ham]
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Protocols and Distributed Algorithms

• Sliding Window Protocol

• Leader Election Protocol [Dolev,Klaw,Rodeh]

• Cache Coherence Protocol for Java Distributed Memory Model

• Failure recovery algorithms for Telecom [Arts, Benac Earle]

• IEEE 1394.1 Firewire Busbridges Standardization

1394 serial bus
Bus bridges

Home devices
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Embedded Systems
Move up

Move down

• Truck lift controllers built by Add-controls

• In-flight Data-acquisition Unit for Lynx helicopter [RNLN, NLR]

• Avionics Control Systems [ Moscow State Univ., RedLab Ltd.]

• Safety of railroad tracks (Euris specifications)
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Shared Dataspace Architectures

• JavaSpacestm Distributed Applications [Sun Microsystems]

– read/write/take on a global shared object space

– transactions, notification events, resource leasing

– dining philosophers, termination detection, parallel summation

• Splice Coordination Architecture [Thales]

– Real-time distributed databases with replicated data

– Publish/subscribe mechanism for loosely coupled components

– Verification question: transparent replication of software

components
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Replication in Splice

input output
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Conclusion

• LPO format contributes to modularity of the tool set

• Methodological integration of symbolic, on-the-fly and explicit

state analysis

• Combination of interactive (PVS) and automated theorem proving

(EQ-BDDs), symbolic and explicit state model checking.

• Meta-theory is completely verified in PVS

• In principle, an individual verification in the tool set could be

mapped onto PVS, for a “second opinion”
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