Sequential and Distributed Test Generation using Boolean Equation Systems

Radu Mateescu (joint work with Christophe Joubert) *INRIA Rhône-Alpes / VASY* http://www.inrialpes.fr/vasy

Outline

- Conformance testing
- On-the-fly test generation method used by TGV
- Reformulation using boolean equation systems
- Sequential and distributed resolution algorithms
- Experiments
- Ongoing work

Conformance testing [Tretmans-97]

(black box)

• Input/output conformance relation (ioco):

after executing each visible execution trace contained in M, the IUT exhibits only outputs and quiescences that are possible in M

Inputs of IUT are *controllable* by the environment
Outputs and quiescences of IUT are only *observable*

Test generation method underlying TGV [Fernandez-Jard-Jeron-Viho-96, Jard-Jeron-05]

 Specification *M* and IUT are represented as IOLTSs (Input/Output Labelled Transition Systems)

$$M = (S, A, T, S_0)$$
$$A = A_1 \cup A_0 \cup \{\tau\}$$

- Assume alphabets of M and IUT are compatible - $A_i^M \subseteq A_i^{UT}$ and $A_0^M \subseteq A_0^{UT}$
- Assume IUT is (weakly) input complete
 - In every state, all inputs are accepted (possibly after τ^*)

Suspension and determinization

- $\Delta(M)$: suspension automaton of M
 - Explicitly marks the quiescent states of M by self-loops labelled by a special (output) action δ
- Can be done on-the-fly by applying τ-compression (contraction of τ-SCCs) [Mateescu-05]
- STraces(M) = Traces(∆(M)): suspension traces of M
 - Conformance testing = comparison between *STraces*(IUT) and *STraces(M*)
- $det(\Delta(M))$: τ -closure & determinization of $\Delta(M)$
 - Keeps only visible actions and suspension traces
 - Must occur *after* suspension (to preserve quiescence)

Test cases

- IOLTS $TC = (S^{TC}, A^{TC}, T^{TC}, s_0^{TC})$
 - Three sets of trap states (verdicts) Pass, Fail, Inconc $\subset S^{TC}$
 - $A_O^{TC} \subseteq A_I^M$ (*TC* emits only inputs of *M*)
 - $A_{I}^{TC} \subseteq A_{O}^{IUT} \cup \{\delta\}$ (*TC* for esees outputs and quiescences of IUT)
 - States in Fail and Inconc only reachable by inputs
 - From each state a verdict must be reachable
 - No choice between two outputs or an input and an output (*controllability*)
 - Input completion in all states where an input is possible
- Test suite: a set of test cases

Test execution

 Parallel composition of a test case and the IUT with synchronization on all visible actions

TC | | ⊿(IUT)

- Verdicts of execution associated to maximal traces (ending with a verdict returned by *TC*)
- *TC* may have loops (\Rightarrow possible infinite execution)
 - Use global timers to limit the test execution
- TC may reject IUT: there exists a trace in Traces (TC || △(IUT)) ending with a Fail verdict
- Similarly for *may pass* and *may inconc*

Soundness and exhaustiveness

• *TC* sound for M and ioco:

 \forall IUT. IUT ioco M $\Rightarrow \neg$ (*TC may reject* IUT)

• Test suite exhaustive for M and ioco:

 \forall IUT. \neg (IUT ioco M) $\Rightarrow \exists$ TC. *TC may reject* IUT

- Complete test suite
 - Sound and exhaustive
 - Test suite does not reject a conformant IUT
 - Every non-conformant IUT is possibly rejected (impossible to ensure with finite test suites)
- In practice: only exhaustiveness of the test generation method is required

Test purposes

- Descriptions of the behaviours to be tested
- IOLTS $TP = (S^{TP}, A^{TP}, T^{TP}, s_0^{TP})$
 - Two sets of trap states

Accept^{TP}, Refuse^{TP} $\subseteq S^{TP}$

- $A^{TP} = A^{M}$ (same alphabet as M)
- Deterministic
- Complete (all actions are possible in each state)
- Trap states have a self-loop for each action
- "*" action: "any action in A^{TP}" (wildcard)
- Accept^{TP} states: select targeted behaviours
- *Refuse^{TP}* states: cut the exploration of *M*

Functioning of TGV

Based upon DFS algorithms (unsuitable for distribution)

Characterization in modal µ-calculus

• $\phi_{I2a} = \mu X$. $acc \lor \langle - \rangle X$

- States from which a Pass verdict (acc state) is reachable
- $\phi_{inc} = v Y \cdot \langle !\delta \lor !a \rangle \text{ true } \land [\tau] Y$
 - States from which an **Inconc** verdict is τ^* -reachable
 - ϕ_{inc} = true
- $\phi_{ctg} = \phi_{I2a} \wedge vZ$. [true] (($\phi_{I2a} \Rightarrow Z$) $\wedge (\neg \phi_{I2a} \Rightarrow \phi_{inc}$))
 - States of the "raw" CTG (containing τ -transitions)
 - vZ-subformula = true

-
$$\phi_{ctg} = \phi_{I2a}$$

• CTG contains a test case iff $s_0 \mid = \phi_{ctg}$

Translation to BES resolution with diagnostic

 $S \mid = \phi_{ctg} = X_s \wedge Z_s$ disjunctive block $\{X_{s} = ACC_{s} \lor \bigvee_{s \to s'} X_{s'}\}$ conjunctive blocks { $Y_s = \bigvee_{s \to !a s'} true \land \land_{s \to \tau s'} Y_{s'}$ } $\{ Z_{s} = \bigvee \land_{s \to s'} ((X_{s'} \Rightarrow Z_{s'}) \land (\neg X_{s'} \Rightarrow Y_{s'}) \}$

Distributed local resolution

block 1
$$\begin{cases} x_{1,1} \stackrel{\nu}{=} x_{2,1} \land x_{1,2} \\ x_{2,1} \stackrel{\nu}{=} x_{3,1} \land x_{1,3} \\ x_{3,1} \stackrel{\nu}{=} x_{3,1} \lor x_{1,3} \end{cases}$$

block 2
$$\begin{cases} x_{1,2} \stackrel{\mu}{=} x_{2,1} \lor x_{1,3} \lor x_{2,2} \\ x_{2,2} \stackrel{\mu}{=} x_{1,2} \end{cases}$$

block 3
$$\begin{cases} x_{1,3} \stackrel{\nu}{=} \text{ false} \end{cases}$$

 MB-DSolve algorithm [Joubert-Mateescu-06]

- Two distributed BFS traversals of the boolean graph (forward expansion and backward stabilization)
- Partial distributed termination detection (stabilization of a portion of a block)

SENVA meeting, CWI, Amsterdam, April 3-4, 2006

Tools architecture

Experiments

IDPOT cluster
 48 bi-Xeon
 2.4 GHz, 1.5 Gb

• VLTS benchmark suite

http://www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html

Sequential Extractor vs. TGV

(generic TP - accepting state after 10 visible actions, VLTS)

	TGV			(sequential) EXTRACTOR						
EXAMPLE	time	Мв	states	trans.	time	%	Мв	%	states	trans.
vasy_164_1619	15'8s	242	100319	231266	3'47s	75	210	13	438861	2982696
vasy_166_651	20'23s	242	$170\ 657$	586602	1'41s	92	113	53	444542	1504985
cwi_371_641	6'5s	1600	125894	597445	5'20s	12	310	81	1912260	3163177
vasy_386_1171	9s	11	3319	3892	7s	22	10	9	5561	6324
vasy_1112_5290	23s	33	10827	20 888	13s	44	28	15	15008	$41\ 225$
b256	597'4s	2322	264194	854786	139'22s	77	2772	-2	12139232	39020231

TGV:

- 1.82 times slower than Extractor + Determinator
- Produces CTGs between 30% and 50% smaller

/ "raw" CTGs (contain τ-transitions)

Distributed Extractor + Determinator (generic TP, 7 nodes, VLTS)

	(distr	Determinator					
EXAMPLE	time	Мв	time	Мв	states (final)	transitions (final)	
vasy_164_1619	4'39s	470	4'40s	55	103658	975594	
vasy_166_651	2'59s	335	2'27s	50	173259	801675	
cwi_371_641	12'4s	880	25'8s	185	127218	777278	
vasy_386_1171	16s	104	15s	6	2452	3894	
vasy_1112_5290	27s	228	17s	7	8 369	41225	
b256	180'	6127	19'	459	527875	1709058	

final CTGs (without τ-transitions) strongly equivalent to those produced by TGV

Sequential Extractor vs. TGV (memory)

Example	M states	M trans.	EXTRACTOR + DETERMINATOR
cwi_214_684	214	684	8 s., 19 MB, no test case
cwi_566_3984	566	3984	1195 s., 145 Mb, (32 states, 49 trans.)

• TGV fails by memory shortage (> 3Gb)

Conclusion and future work

• Summary

- Conformance test generation encoded as BES resolution with diagnostic (Extractor)
- MB-DSolve: distributed local resolution of multiple block BESs
- Generic implementation using OPEN/CAESAR
- Performance comparable with TGV
- Ongoing and future work
 - Further experiments and benchmarks
 - Handling of heterogeneous architectures (grids)
 - Other applications (discrete controller synthesis)

