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Motivation

x 2 RN Ax 2 RN z = P� (Ax)

I x : original image

I A : linear operator fromRN to RN

I P� : e�ect of noise where� > 0 is the scaling parameter
I z : degraded image of sizeN
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Motivation

x 2 RN Ax 2 RN z = P� (Ax)

I x : original image
Assumption: sparse after some appropriate transform

I A : linear operator fromRN to RN

I P� : e�ect of noise where� > 0 is the scaling parameter
I z : degraded image of sizeN

Objective : recoverx from the observationsz
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Motivation

bx 2 Argmin
x2 RN

g(Ax; z)
| {z }

Data �delity term
g(A�;z)2 � 0(RN )

+ � f (x)
| {z}

Regularization term
f 2 � 0(RN )

where � > 0
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Motivation : Existing works { Gaussian noise

Regularized approach Constrained approach

min
x2 RN

kAx � zk2 + � f (x) min
kAx � zk2� �

f (x)

[Tikhonov, 1963] [Combettes, Trussell, 1991]
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If f = kF � k2

! Gradient-based methods ! POCS[Trussell, Civanlar, 1984]
! Subgradient projections

[Luo, Combettes, 1999]
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Motivation : Existing works { Gaussian noise

Regularized approach Constrained approach

min
x2 RN

kAx � zk2 + � f (x) min
kAx � zk2� �

f (x)

[Tikhonov, 1963] [Combettes, Trussell, 1991]

If f = kF � k2

! Gradient-based methods ! POCS[Trussell, Civanlar, 1984]
! Subgradient projections

[Luo, Combettes, 1999]

If f (x) =
X

i

j(Fx)(i ) j1

(whereF is a wavelet transform, a frame)
! Proximal methods ! Proximal methods

[Combettes, Pesquet, 2011] [Combettes, Pesquet, 2011]
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Motivation : Existing works { Gaussian noise
Regularized approach Constrained approach

min
x2 RN

kAx � zk2 + � f (x) min
f (x)� �

kAx � zk2

[Tikhonov, 1963]

If f = k � k1;p =
X

b2 L

kBb � k with p � 1

! block sparsity measure :
for everyb 2 L � K, Bb is a
block selection transform.



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

6/40

Motivation : Existing works { Gaussian noise
Regularized approach Constrained approach

min
x2 RN

kAx � zk2 + � f (x) min
f (x)� �

kAx � zk2

[Tikhonov, 1963]

If f = k � k1;p =
X

b2 L

kBb � k with p � 1

! block sparsity measure :
for everyb 2 L � K, Bb is a
block selection transform.

! Proximal methods ! Inner iterations,?
[Combettes, Pesquet, 2011] [Van Den Berg,Friedlander,2008]
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Motivation : Existing works { Poisson noise

Regularized approach Constrained approach

min
x2H

DKL (Tx ; z) + � f (x) min
DKL (Tx ;z)� �

f (x)
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min
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DKL (Tx ; z) + � f (x) min
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f (x)

If f = kF � k2

! Cross-Entropy minimization ! ?
[Byrne, 1993]
! Barrier function optimization
[Chouzenouxet al., 2011]
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Regularized approach Constrained approach

min
x2H

DKL (Tx ; z) + � f (x) min
DKL (Tx ;z)� �

f (x)

If f = kF � k2

! Cross-Entropy minimization ! ?
[Byrne, 1993]
! Barrier function optimization
[Chouzenouxet al., 2011]

If f (x) =
X

i

j(Fx)(i ) j1

(whereF can denote a gradient �lter, a wavelet transform, a frame)
! Proximal methods ! ?
[Combettes, Pesquet, 2011]



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

8/40

Problem

bx 2 Argmin
x2 RN

RX

r=1

gr (Tr x) s.t.

8
>><

>>:

h1(H1x) � � 1 ;
...

hS(HSx) � � S ;

I (8s 2 f 1; : : : ; Sg), Hr : RN ! RMs is a linear operator,
I (8s 2 f 1; : : : ; Sg), hs 2 � 0(RMs),

I (8r 2 f 1; : : : ; Rg), Tr : RN ! RNr is a linear operator,
I (8r 2 f 1; : : : ; Rg), gr 2 � 0(RNr ).

) Any closed convex subsetCs of RMs can be expressed in this way
by setting � s = 0, L = 1 and hs = dCs = k � � PCsk
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Problem

bx 2 Argmin
x2 RN

RX

r=1

gr (Tr x) s.t.

8
>><

>>:

H1x 2 C1 ;
...

HSx 2 CS ;

I (8s 2 f 1; : : : ; Sg), Hr : RN ! RMs is a bounded linear operator,
I (8s 2 f 1; : : : ; Sg), Cs is a nonempty closed convex subset ofRMs,

I (8r 2 f 1; : : : ; Rg), Tr : RN ! RNr is a bounded linear operator,
I (8r 2 f 1; : : : ; Rg), gr 2 � 0(RNr ).
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Problem

bx 2 Argmin
x2 RN

RX

r=1

gr (Tr x) s.t.

8
>><

>>:

H1x 2 C1;
...

HSx 2 CS;

I Forward-Backward [Combettes,Wajs,2005]

! minx g1(T1x) + g2(x) with g1 gradient Lipschitz function
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bx 2 Argmin
x2 RN

RX

r=1

gr (Tr x) s.t.

8
>><

>>:

H1x 2 C1;
...

HSx 2 CS;

I Forward-Backward [Combettes,Wajs,2005]

! minx g1(T1x) + g2(x) with g1 gradient Lipschitz function

I Douglas-Rachford[Combettes,Pesquet,2007]

! minx g1(x) + g2(x)
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Problem

bx 2 Argmin
x2 RN

RX

r=1

gr (Tr x) s.t.

8
>><

>>:

H1x 2 C1;
...

HSx 2 CS;

I Forward-Backward [Combettes,Wajs,2005]

! minx g1(T1x) + g2(x) with g1 gradient Lipschitz function

I Douglas-Rachford[Combettes,Pesquet,2007]

! minx g1(x) + g2(x)

I PPXA [Combettes,Pesquet,2008]

! minx
P R

r=1 gr (x) +
P S

s=1 �Cs(x)
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Problem

bx 2 Argmin
x2 RN

RX

r=1

gr (Tr x) s.t.

8
>><

>>:

H1x 2 C1;
...

HSx 2 CS;

I PPXA + [Pesquet,Pustelnik,2012] / ADMM [Setzer,Steidl,Teuber,2009]

! minx
P R

r=1 gr (Tr x) +
P S

s=1 �Cs(Hsx)

!
P R

r=1 T �
r Tr +

P S
s=1 H �

s Hs invertible
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Problem

bx 2 Argmin
x2 RN

RX

r=1

gr (Tr x) s.t.

8
>><

>>:

H1x 2 C1;
...

HSx 2 CS;

I PPXA + [Pesquet,Pustelnik,2012] / ADMM [Setzer,Steidl,Teuber,2009]

! minx
P R

r=1 gr (Tr x) +
P S

s=1 �Cs(Hsx)

!
P R

r=1 T �
r Tr +

P S
s=1 H �

s Hs invertible

I M+SFBF [Brice~no-Arias,Combettes,2011]

M+LFBF [Combettes,Pesquet,2012] and others[V~u,2013][Condat,2013]

! minx
P R

r=1 gr (Tr x) +
P S

s=1 �Cs(Hsx)
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Problem
For n = 0 ; 1; : : :
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

x [n] =
P R

r =1 ! r u[n]
r +

P S
s=1 ! su[n]

s  � Under technical assumptions, (x [n])n2 N generated by
For r = 1 ; : : : ; R M+SFBF [ Combettes,Brice~no-Arias,2011] converges to x̂6
6
6
4

w [n]
1; r = u[n]

r �  ` T �
r v [n]

r

w [n]
2; r = v [n]

r +  ` T r u[n]
r

For s = 1 ; : : : ; S6
6
6
4

w [n]
1; s = u[n]

s �  nH �
s v [n]

s

w [n]
2; s = u[n]

s +  nHsu[n]
s

p[n]
1 =

P R
r =1 ! r w [n]

1; r +
P S

s=1 ! sw [n]
1; s

For r = 1 ; : : : ; R
6
6
6
6
6
6
6
6
6
6
6
4

p[n]
2; r = w [n]

2; r �
 n

! r
prox ! r

 n
gr

 
! r

 n
w [n]

2; r

!

 � Proximity operator computation

q[n]
1; r = p[n]

1 �  n(T �
r p[n]

2; r )

q[n]
2; r = p[n]

2; r +  n (T r p[n]
1 )

Update u[n+1]
1 and v [n+1]

1
For s = 1 ; : : : ; S
6
6
6
6
6
6
6
6
6
6
6
4

p[n]
2; s = w [n]

2; r �
 n

! s
PCs

 
! s

 n
w [n]

2; r

!

 � Projection computation

q[n]
1; s = p[n]

1 �  n(H �
s p[n]

2; s)

q[n]
2; s = p[n]

2; s +  n (Hsp[n]
1 )

Update u[n+1]
1 and v [n+1]

1
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Proximity operator

De�nition [Moreau,1965] Let f 2 � 0(H ) where H denotes a real Hilbert space. The
proximity operator of f at point u 2 H is the unique point denoted byprox f u such that

(8u 2 H ) prox f u = arg min
v2H

f (v) +
1
2

ku � vk2
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De�nition [Moreau,1965] Let f 2 � 0(H ) where H denotes a real Hilbert space. The
proximity operator of f at point u 2 H is the unique point denoted byprox f u such that

(8u 2 H ) prox f u = arg min
v2H

f (v) +
1
2

ku � vk2

Examples: closed form

I prox� k�k1
: soft-thresholding with a �xed threshold� > 0

-2 -1 0 1 2
-1

-0.5

0

0.5

1
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De�nition [Moreau,1965] Let f 2 � 0(H ) where H denotes a real Hilbert space. The
proximity operator of f at point u 2 H is the unique point denoted byprox f u such that

(8u 2 H ) prox f u = arg min
v2H

f (v) +
1
2

ku � vk2

Examples: closed form

I prox� k�k1
: soft-thresholding with a �xed threshold� > 0

I proxk�k1;2
[Peyr�e,Fadili,2011].

I proxDKL
[Chaux,Combettes,Pesquet,Wajs,2005].

I prox� C
= PC : projection onto the convex setC.
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De�nition [Moreau,1965] Let f 2 � 0(H ) where H denotes a real Hilbert space. The
proximity operator of f at point u 2 H is the unique point denoted byprox f u such that

(8u 2 H ) prox f u = arg min
v2H

f (v) +
1
2

ku � vk2

Examples: closed form

I prox� k�k1
: soft-thresholding with a �xed threshold� > 0

I proxk�k1;2
[Peyr�e,Fadili,2011].

I proxDKL
[Chaux,Combettes,Pesquet,Wajs,2005].

I prox� C
= PC : projection onto the convex setC.

! range constraint: hypercube projection,
! closed half-space: half-space projection,
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Proximity operator

De�nition [Moreau,1965] Let f 2 � 0(H ) where H denotes a real Hilbert space. The
proximity operator of f at point u 2 H is the unique point denoted byprox f u such that

(8u 2 H ) prox f u = arg min
v2H

f (v) +
1
2

ku � vk2

Examples: NO closed form

I prox� C
= PC : projection onto the convex setC.

! C models à 1;p-ball constraint: iterative procedure for projection
[Quattoni,Carreras,Collins,Darrell,2007] [Van Den Berg,Friedlander,2008].

! constraint associated with the Kullback-Leibler divergence

! constraint associated with the logistic cost function
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Solution

I Assumption: separable function

For everyy = [(y (1) )>

| {z }
sizeM (1)

; : : : ; (y(L) )>

| {z }
sizeM (L)

]> 2 RM ,

y 2 C , h(y) � � ,
LX

`=1

h(` )(y(` ) ) � �:



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

14/40

Solution

I Assumption: separable function

For everyy = [(y (1) )>

| {z }
sizeM (1)

; : : : ; (y(L) )>

| {z }
sizeM (L)

]> 2 RM ,

y 2 C , h(y) � � ,
LX

`=1

h(` )(y(` ) ) � �:

I Solution : splitting the constraint into simpler constraintsby

introducing the auxiliary vector� =
�
� (` )

�
1� ` � L 2 RL,

y 2 C ,

( P L
`=1 � (` ) � �;

(8` 2 f 1; : : : ; Lg) h(` ) (y(` ) ) � � (` ) :
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Solution

I Assumption: separable function

For everyy = [(y (1) )>

| {z }
sizeM (1)

; : : : ; (y(L) )>

| {z }
sizeM (L)

]> 2 RM ,

y 2 C , h(y) � � ,
LX

`=1

h(` )(y(` ) ) � �:

I Solution : splitting the constraint into simpler constraintsby

introducing the auxiliary vector� =
�
� (` )

�
1� ` � L 2 RL,

y 2 C ,

( P L
`=1 � (` ) � �;

(8` 2 f 1; : : : ; Lg) (y (` ) ; � (` )) 2 epih(` ) :
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Solution

y 2 C ,

(
� 2 V

(y; � ) 2 E

I V denotes a closed half-space such that:

V =
�

� 2 RL
�
� 1>

L � � �
	

I E is the closed convex set associated to the epigraphical constraint:

E =
�

(y; � ) 2 RM � RL
�
� (8` 2 f 1; : : : ; Lg) (y (` ) ; � (` ) ) 2 epih(` ) 	
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I V denotes a closed half-space such that:

V =
�

� 2 RL
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� 1>

L � � �
	

! PV has a closed form: projection onto an half-space.

I E is the closed convex set associated to the epigraphical constraint:

E =
�

(y; � ) 2 RM � RL
�
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Solution

y 2 C ,

(
� 2 V

(y; � ) 2 E

I V denotes a closed half-space such that:

V =
�

� 2 RL
�
� 1>

L � � �
	

! PV has a closed form: projection onto an half-space.

I E is the closed convex set associated to the epigraphical constraint:

E =
�

(y; � ) 2 RM � RL
�
� (8` 2 f 1; : : : ; Lg) (y (` ) ; � (` ) ) 2 epih(` ) 	

! PE has a closed form for speci�c choice ofh(` ) .
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Solution

I Euclidean normfunctions de�ned as:

�
8` 2 f 1; : : : ; Lg

��
8y(` ) 2 RM (` ) �

h(` )(y(` ) ) = � (` )ky(` )k

where� (` ) 2 ]0; + 1 [.



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

16/40

Solution

I Euclidean normfunctions de�ned as:

�
8` 2 f 1; : : : ; Lg

��
8y(` ) 2 RM (` ) �

h(` )(y(` ) ) = � (` )ky(` )k

where� (` ) 2 ]0; + 1 [.

I Epigraphic projection : for every (y(` ) ; � (` ) ) 2 RM (` )
� R

Pepih(` ) (y(` ) ; � (` ) ) =

8
><

>:

(y(` ) ; � (` ) ); if ky(` )k < � (` )

� (` ) ;

(0; 0); if ky(` )k < � � (` ) � (` ) ;

� (` ) �
y(` ) ; � (` )ky(` )k

�
; otherwise,

where� (` ) =
1

1 + ( � (` ) )2

�
1 +

� (` ) � (` )

ky(` )k

�
.
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Solution

I In�nity norms de�ned as:
�

8` 2 f 1; : : : ; Lg
��

8y(` ) = (y (`;m) )1� m� M (` ) 2 RM (` )
�

h(` )(y(` ) ) = max

(
jy(`;m) j
� (`;m)

j 1 � m � M (` )

)

where (� (`;m) )1� m� M (` ) 2 ]0; + 1 [M
(` )

.
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Solution
I Epigraphic projection :

I (� (`; m) )1� m� M (` ) : sequence of reals by sorting (jy(`; m) j=� (`; m) )1� m� M (` )

in ascending order (� (`; 0) = �1 and � (`; M (` )+1) = + 1 ).
I m is the unique integer inf 1; : : : ; M (` ) + 1 g such that

� (`; m� 1) <
� (` ) +

P M (` )

m= m � (`; m) (� (`; m) )2

1 +
P M (` )

m= m(� (`; m) )2
� � (`; m) :

I (p(` ) ; � (` ) ) = Pepi h(` ) (y(` ) ; � (` ) ) with p(` ) = (p (`; m) )1� m� M (` ) ,
where

p(`; m) =

8
><

>:

y(`; m) ; if jy(`; m) j � � (`; m) � (` ) ;

� (`; m) � (` ) ; if y(`; m) > � (`; m) � (` ) ;

� � (`; m) � (` ) ; if y(`; m) < � � (`; m) � (` ) ;

and

� (` ) =
max

�
� (` ) +

P M (` )

m= m � (`; m)(� (`; m))2; 0
�

1 +
P M (` )

m= m(� (`; m))2
:
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RGB image restoration with missing samples

Original Degraded
x z = A x + w

I Original (multicomponent) image:x = ( x1; : : : ; xR) 2 (RM )R

I Linear operator:A = ( Aj ;i )1� j � S;1� i � R, with Aj ;i 2 RK � M

I Zero-mean white Gaussian noise:w 2 (RK )S

I Degraded image:z = ( z1; : : : ; zS) 2 (RK )S
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RGB image restoration with missing samples

bx 2 Argmin
x2 (RM )R

kAx � zk2
2| {z }

Data �delity term

+ � g(x)
| {z }

Regularization term

I Component-wise Total Variation(CC-TV)

[Blomgren 1998] [Zach 2007]

I Structure Tensor TV(ST-TV)

! `p matrix-norm regularization

[Di Zenzo 1986] [Sapiro 1996] [Weickert 1999] [Tschumperl�e 2001]
[Bresson 2008] [Duval 2009][Goldluecke 2012]
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RGB image restoration with missing samples

bx 2 Argmin
x2 C� (RM )R

kAx � zk2
2 subj. to g(x) � �

I Constrained approach

I Regularization by ST Non-Local TV(ST-NLTV)

! NLTV better preserves texture, details and �ne structures

! ST better reveals features not visible in single components
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RGB image restoration with missing samples

I Non-Local gradient at point̀ 2 f 1; : : : ; Mg

X (` ) =
�

! `;n (x(` )
i � x(n)

i )
�

n2N ` ; 1� i � R
2 RM ` � R

x(` )
3 x(` )

2 x(` )
1

X (` ) =

2

6
6
4

X (`; 1)
1 X (`; 1)

2 X (`; 1)
3

...
...

...
X (`; M ` )

1 X (`; M ` )
2 X (`; M ` )

3

3

7
7
5

I ST-NLTV

g(x) =
MX

`=1

� ` kX (` )kp , g(x) =
MX

`=1

� `

0

@
minf M ` ;RgX

m=1

�
� (m)

X (` )

� p

1

A

1=p
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RGB image restoration with missing samples

I Non-Local gradient at point̀ 2 f 1; : : : ; Mg

X (` ) =
�

! `;n (x(` )
i � x(n)

i )
�

n2N ` ; 1� i � R
2 RM ` � R

x(` )
3 x(` )

2 x(` )
1

X (` ) =

2

6
6
4

X (`; 1)
1 X (`; 1)

2 X (`; 1)
3

...
...

...
X (`; M ` )

1 X (`; M ` )
2 X (`; M ` )

3

3

7
7
5

I Special case: ST-TV
I N ` ! horizontal/vertical neighbours
I ! `; n � 1
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RGB image restoration with missing samples

bx 2 Argmin
x2 C

kAx � zk2
2 subject to Fx 2 D
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RGB image restoration with missing samples

bx 2 Argmin
x2 C

kAx � zk2
2 subject to Fx 2 D

�
�
�

�
bx; b�

�
2 Argmin

(x;� )2 C� V
kAx � zk2

2 subject to (Fx; � ) 2 E
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I Collection of epigraphs

E =
�

(X ; � )
�
� (X (` ) ; � (` ) ) 2 epik � kp (8` 2 f 1; : : : ; Mg)g

I Closed half-space

V =
�

� 2 RM
�
� 1>

M � � �
	

with 1M = (1 ; : : : ; 1)> 2 RM
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I Proximity operator of spectral functions [Lewis 1995]
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(X (` ) ) = U(` ) Diag(proxk�kp

(s(` ) )) V (` )>

Epigraphical projection

1. Pepik�kp (X (` ) ; � (` ) ) =
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U(` ) Diag(t(` ) ) V (` )>
; � (` )
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2. (t (` ) ; � (` )) = Pepik�kp(s(` ) ; � (` ) )
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RGB image restoration with missing samples

�
bx; b�

�
2 Argmin

(x;� )2 C� W
kAx � zk2

2 subject to (Fx; � ) 2 E

I Degradation:3 � 3 uniform blur, 90% of decimation, AWGN with� = 10

I Color space: RGB

! pixels ofz have missing colors

! impossible to work into YCbCr, CIELab, . . .

I Dynamics range constraint:x(` )
i 2 [0; 255]

I Weights ! `;n estimated as in [Foi 2012]

I Choice of� based on image characteristics
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RGB image restoration with missing samples

Original Noisy Zoom
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RGB image restoration with missing samples

`1-CC-TV `2-CC-TV `1 -CC-TV
16.15 dB 16.32 dB 16.05 dB
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RGB image restoration with missing samples
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RGB image restoration with missing samples
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RGB image restoration with missing samples

`1-ST-NLTV `2-ST-NLTV `1 -ST-NLTV
18.20 dB 17.46 dB 16.67



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

27/40

RGB image restoration with missing samples
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Poisson based restoration

minimize
x2 RN

X

b2 L

kBbFxk subject to

(
x 2 C

g(Ax; z) � �:

I For computational reasons, it will be assumed that there exists a
partition of L in S subsets (L s)1� s� S such that
P

b2 L kBb � k =
P S

s=1
P

b2 Ls
kBb � k (i.e. grouped intoS sets of

non-overlapping blocks).

(S = 2)
I Particular case: S = 1 , L = L1 = K and, for every b2 L, Bb selects one

element (i.e. one pixel)! the classical `1-norm is obtained .
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Poisson based restoration

minimize
x2 RN

SX

s=1

X

b2 Ls

kBbFxk subject to

(
x 2 C

g(Ax; z) � �:

that is equivalent to

minimize
x2 RN

SX

s=1

X

b2 Ls

kBbFxk subject to

(
x 2 C

Ax 2 D

with D =
�

u 2 RK
�
� g(u; z) � �

	
= lev� � g(�; z).
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Poisson based restoration

minimize
x2 RN

SX

s=1

X

b2 Ls

kBbFxk subject to

(
x 2 C

g(Ax; z) � �:

that is equivalent to

minimize
x2 RN

SX

s=1

X

b2 Ls

kBbFxk subject to

(
x 2 C

Ax 2 D

with D =
�

u 2 RK
�
� g(u; z) � �

	
= lev� � g(�; z).

I Projection onto D
! Closed form ifg(�; z) = k � � zk2 [Rockafellar, 1969].

! NO closed form in a general context.
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Poisson based restoration

Explicit form of the projection operator associated with :

h` (v
` ) ) = maxf v(`; j ) + � (`; j ) j 1 � j � M (` )g

where
! v(` ) = (v (`;1) ; : : : ; v(`;M (` ) ) )> 2 RM (` )

! ` 2 f 1; : : : ; Lg and (� (`;1) ; : : : ; � (`;M (` ) ) )> 2 RM (` )

Example forL = 1 and M (1) = 3 :
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Poisson based restoration

g(u; z) =
LX

`=1

g` (u(` ) ; z(` ) ) '
LX

`=1

h` (� (` )u(` ))

I h` (v(` ) ) = maxf v(`; j ) + � (`; j ) j 1 � j � M (` )g,
I � (`; j ) = g` (a

(` )
j ; z(` )) � � (` )

j a(` )
j ,

I � (` )
j 2 R is any subgradient ofgr (�; z` ) at a(` )

j ,

I � (` ) = [ � (` )
1 ; : : : ; � (` )

M (` ) ]
> .

! The approximation can be as close
as desired by choosingM (` ) large en-
ough.

a(1)
2 a(1)

3

h1 � � (1)

a(1)
1

g1

u(1)
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h1 � � (1)
g1

a(1)
1 a(1)

2 a(1)
3 a(1)

4 a(1)
5

u(1)
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Poisson based restoration

minimize
x2 RN

SX

s=1

X

b2 Ls

kBbFxk subject to

(
x 2 C

Ax 2 D

) Approximated criterion :

minimize
(x;� )2 RN � RL

SX

s=1

X

b2 Ls

kBbFxk subject to

(
(x; � ) 2 C � V

� Ax 2 E

where
I D =

�
u 2 RL

�
� g(u; z) � �

	
,

I V =
�

� 2 RL
�
� 1>

L � � �
	

,
I E = f (v; � ) 2 RM � RL j (8` 2 f 1; : : : ; Lg) (v (` ) ; � (` ) ) 2 epih`g,
I For everyu 2 RL, g(u; z) =

P L
`=1 g` (u(` ) ; z(` ) ) '

P L
`=1 h` (� (` )u(` )).
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Poisson based restoration

I Electron microscopy image of sizeN = 128 � 128,
I T denotes a randomly decimated blur : uniform blur of size 3� 3 and

approximately 60% of missing data, that leads toL = 9834,
I Poisson noise with scaling parameter 0:5.

Original Degraded
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Poisson based restoration

Choice of the criterion :
I Data �delity : approximation of the Poisson likelihood,

I Inuence of M � M (` ) ,
I C = [0 ; 255]N ,
I F : Dual-Tree Transform (DTT) { symmlet 6, 2 levels,
I Blocks :

I `1-reg : Classical̀1 cost function,
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Poisson based restoration

I Impact of M and of the regularization term.

3 5 7 9
14
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Value of M
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1
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Poisson based restoration

I M = 7,
I Impact of the regularization term.

`1-reg BlockPrimalDual Block4Pixel overlap
SNR = 16:3 dB SNR = 16:5 dB SNR = 16:6 dB



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

37/40

Conclusions

Argmin
x

RX

r=1

gr (Tr x) s.t.

8
>>>><

>>>>:

P L
`=1 h(` )

1

�
(H1x)(` )

�
� � 1

H2x 2 C2
...

HSx 2 CS

�
�
�

Argmin
x;�

RX

r=1

gr (Tr x) s.t.

8
>>>>>>><

>>>>>>>:

(8` 2 f 1; : : : ; Lg) h(` )
1

�
(H1x)(` )

�
� � (` )

P L
`=1 � (` ) � � 1

H2x 2 C2
...

HSx 2 CS
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Argmin
x

RX
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gr (Tr x) s.t.
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>>>><

>>>>:
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`=1 h(` )
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�
(H1x)(` )

�
� � 1

H2x 2 C2
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HSx 2 CS

�
�
�

Argmin
x;�

RX

r=1

gr (Tr x) s.t.

8
>>>>>>><

>>>>>>>:

(8` 2 f 1; : : : ; Lg) h(` )
1

�
(H1x)(` )

�
� � (` )

P L
`=1 � (` ) � � 1

H2x 2 C2
...

HSx 2 CS

! P
epih(` )

1
: closed form whenh(` )

1 models a Euclidean or in�nity norm.
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! Faster than direct methods
[Quattoni,Carreras,Collins,Darrell,2007] [Van Den Berg,Friedlander,2008] .
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a(1)
2 a(1)

3

h1 � � (1)

a(1)
1

g1

u(1)

! Links with bundle methods ?
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